2023年12月9日发(作者:比亚迪小型车2万左右)

导数——大题——切线:1.(2022年江苏徐州J53)已知a?0,函数f(x)?ax?xex.(I)求曲线y?f(x)在点(0,f(0))处的切线方程:①(II)证明f(x)存在唯一的极值点()(III)若存在a,使得f(x)?a?b对任意x?R成立,求实数b的取值范围.(切线,易;第二问,未;)2.(2022年江苏常州J59)已知函数f?x??x?a?lnx?x?,a?R.ex②(1)当a?1时,求曲线y?f?x?在x?1处的切线方程;()(2)讨论函数f?x?的零点个数.(切线,易;第二问,未;)3.(2022年福建福州联考J01)已知函数f(x)?aex?ln(x?1)?lnb(1)若f(x)在x?0处的切线方程为y?1,(i)求a,b的值;③(ii)讨论f(x)的单调性.()(2)若b?a,证明:f(x)有唯一的极小值点.(切线,中下;单调性,中下;第二问,未;)4.(2022年福建福州J05)设函数f?x??xex?1?a,曲线y?f?x?在x??1处的切线与y轴交于点1??0,e??2?;e??(1)求a;()④(2)若当x???2,???时,f?x??b?x?1?,记符合条件的b的最大整数值?最小整数值分别为M,m,求M?m.注:e?2.71828???为自然对数的底数.(切线,中下;第二问,未;)1.(2022年福建三明一中J39)已知函数f(x)?ex?(x?a)ln(x?a)?x,a?R.⑤(1)当a?1时,求函数f(x)的图象在x?0处的切线方程;()第1页共30页(2)若函数f(x)在定义域上为单调增函数.①求a最大整数值;②证明:ln2?(ln)?(ln)?L?(ln322433n?1ne)?.(切线,易;第二问,未;)ne?12.(2022年湖南长沙一中J02)已知函数f?x???x?b?e?a.(b?0)在?1,f??1?处的切线l?x???方程为?e?1?x?ey?e?l?0.⑥(1)求a,b,并证明函数y?f?x?的图象总在切线l的上方(除切点外);()(2)若方程f?x??m有两个实数根x1,x2.且x1?x2.证明:x2?x1?1?(切线,中下;第二问,未;)m?1?2e?1?e.1.(2022年高考乙卷J04)已知函数f?x??ln?1?x??axe?x⑦(1)当a?1时,求曲线y?f?x?在点0,f?0?处的切线方程;()??(2)若f?x?在区间??1,0?,?0,???各恰有一个零点,求a的取值范围.(切线,易;第二问,未;)1.(2022年湖北华师附中J61)已知函数f(x)?xex?alnx(a?R)在x?1处的切线方程为y?(2e?1)x+b.(1)求实数a,b的值;()⑧(2)(i)证明:函数y?f(x)有且仅有一个极小值点x?x0,且x0?(,1);(ii)证明:3141?f(x0)?).(切线,中下;第二问,未;15151112参考数据:ln2?0.693,e?1.648,e0.55?1.734,e?30?0.693.2.⑨(2022年河北演练一J39)已知函数f(x)?lnx?bx?a,其中a,b?R.()(1)若a?1,曲线y?f(x)在x?2处的切线与直线x?2y?1?0平行,求f(x)的极值;第2页共30页(2)当b?1,a??1时,证明:ex?2?f(x)).(切线,中下,单调性,极值,中下;第二问,未;x3.(2022年河北联考J42)设函数f(x)?emx?x2?mx?t在(0,f(0))处的切线经过点(1,1).⑩(1)求t的值,并且讨论函数f(x)的单调区间;()(2)当m?1时,x?(0,??)时,不等式f(2x)?f(?2x)?4b[f(x)?f(?x)]恒成立,求b的取值范围.(切线,中下,单调性,中下;第二问,未;)1.(2022年湖北襄阳五中J24)已知函数f?x??e?2ax?b在x?0处的切线经过点?1,2?.x?(1)若函数f?x?至多有一个零点,求实数a的取值范围;()(2)若函数f?x?有两个不同的零点x1,x2?x1?x2?,且x2?5,求证:x111??.x2aax2(e?2.7,e2?7.4,e3?20.1)(切线,中下;零点分析,中档,未;第二问,未;)1.(2022年湖南三湘名校J45)已知函数f(x)?ex(其中e是自然对数的底数).过点P(m,1)(m?0)作曲xx线y?f(x)的两条切线,切点坐标分别为x1,e1,x2,e2?()(1)若x2?1,求m的值;?????x?x?.12)(2)证明:x1?x2随着m的增大而增大.(切线,易;第二问,未;2.(2022年湖北武汉J01)定义在??(1)当k??π?,???上的函数f?x???x?k?sinx.(?)?2?π?π?时,求曲线y?f?x?在点?,0?处的切线与两坐标轴所围成的三角形的面积;?6?6(2)将f?x?的所有极值点按照从小到大的顺序排列构成数列?xn?,若f?x1??f?x2??0,求k的值.(切线,中下;第二问,未;)ex?3.(2022年湖北四校联考J17)已知函数f?x??()?alnx?b(x?0),g?x??lnx?x.x第3页共30页(1)若曲线y?f?x?在x?1处的切线方程为y?2x?e?3,求a,b;(2)在(1)的条件下,若f?m??g?n?,比较m与n的大小并证明.(切线,中下;第二问,未;)第4页共30页①【答案】(I)y?(a?1)x,(a?0);(II)证明见解析;(III)??e,???【解析】【分析】(I)求出f?x?在x?0处的导数,即切线斜率,求出f?0?,即可求出切线方程;(II)令f??x??0,可得a?(x?1)ex,则可化为证明y?a与y?g?x?仅有一个交点,利用导数求出g?x?的变化情况,数形结合即可求解;(III)令h(x)?x?x?1e,(x??1),题目等价于存在x?(?1,??),使得h(x)?b,x?2?即b?h(x)min,利用导数即可求出h?x?的最小值.【详解】(I)f?(x)?a?(x?1)ex,则f?(0)?a?1,又f(0)?0,则切线方程为y?(a?1)x,(a?0);(II)令f?(x)?a?(x?1)ex?0,则a?(x?1)ex,令g(x)?(x?1)ex,则g?(x)?(x?2)ex,当x?(??,?2)时,g?(x)?0,g?x?单调递减;当x?(?2,??)时,g?(x)?0,g?x?单调递增,当x???时,g?x??0,g??1??0,当x???时,g?x??0,画出g?x?大致图像如下:所以当a?0时,y?a与y?g?x?仅有一个交点,令g?m??a,则m??1,且f?(m)?a?g(m)?0,当x?(??,m)时,a?g(x),则f?(x)?0,f?x?单调递增,第5页共30页当x??m,???时,a?g(x),则f?(x)?0,f?x?单调递减,x?m为f?x?的极大值点,故f(x)存在唯一的极值点;(III)由(II)知f(x)max?f(m),此时a?(1?m)em,m??1,所以{f(x)?a}max?f(m)?a?m?m?1e,(m??1),m?2?令h(x)?x?x?1e,(x??1),x?2?若存在a,使得f(x)?a?b对任意x?R成立,等价于存在x?(?1,??),使得h(x)?b,即b?h(x)min,h?(x)??x2?x?2?ex?(x?1)(x?2)ex,x??1,当x?(?1,1)时,h?(x)?0,h?x?单调递减,当x?(1,??)时,h?(x)?0,h?x?单调递增,所以h(x)min?h(1)??e,故b??e,所以实数b的取值范围??e,???.【点睛】关键点睛:第二问解题的关键是转化为证明y?a与y?g?x?仅有一个交点;第三问解题的关键是转化为存在x?(?1,??),使得h(x)?b,即b?h(x)min.②【答案】(1)y?1?1;(2)答案不唯一,见解析.e【解析】【分析】(1)求出导函数f?(x),得切线斜率f?(1),从而可得切线方程;(2)定义域是(0,??),在a?0时直接由函数f(x)的解析式确定无零点(需用导数证明,在a?1时,由导函数f?(x),得单调性,确定函数的最大值为f(1),根据f(1)lnx?x?0)1的正负分类讨论.在f(1)?0时,通过证明f(a)?0和f()?0,得零点个数.a【详解】(1)当a?1时,f?x??1x1?x1??lnx?xfx???1,f1??1,,????xxeexef??1??0,所以曲线y?f?x?在x?1处的切线方程为y?(2)函数f?x?的定义域为?0,???,1?1.ef??x??1?x?1?1?x1?x?1a??a?1??a??1?x???x??.??xxex?x?e?ex?第6页共30页①当a?0时,f?x??②当a?0时,x?0,f?x?无零点.ex1a??0,令f??x??0,得0?x?1,令f??x??0,xex得x?1,所以f?x?在?0,1?上单调递增,在?1,???上单调递减,所以f?x?有最大值f?1??当1?a.e11?a?0,即a?时,f?x?无零点.ee11?a?0,即a?时,f?x?只有一个零点.eea11?a?0,即0?a?时,f?1??0,f?a??a?a?lna?a?,eee11?x?1?,则g?x?在?0,1?上单调递增,在?1,???上xx当当令g?x??lnx?x?1,则g??x??单调递减,所以g?x?max?g?1??0,所以g?x??lnx?x?1?0,因此当0?a?aa1?1?时,lna?a??1,f?a??a?a?lna?a??a?a?a?a?1?.eee?e?a?1?fa?a因为a?0,所以e?1,于是???a?1??0.?e?又f?x?在?0,1?上单调递增,f?1??0,且a?1,所以f?x?在?0,1?上有唯一零点.11?1??11?a,f???a?a?ln???1?alna?11?a??aa?eaea当0?a?11x2x时,?e,令h?x??e?x,其中x?e,则h??x??e?2x,aexx令??x??e?2x,x?e,则???x??e?2?0,所以h??x?在?e,???上单调递增,h??x??e?2e?0,e所以h?x?在?e,???上单调递增,h?x??e?e?0,e211?1?故当x?e时,ex?x2.因为?e,所以e???,即a?a,1a?a?ea1a2第7页共30页1所以f?1??a?alna?1?a?alna?1.??1?a?ea由lnx?x?1?0,得ln111??1?0,即?lna??1?0,得a?alna?1?0,于是aaa?1?f???0.?a?又f?1??0,1?1,f?x?在?1,???上单调递减,所以f?x?在?1,???上有唯一零点.故a0?a?1时,f?x?有两个零点.e③当a?0时,由lnx?x?1?0,得lnx?x??1?0,则a?lnx?x??0,又当x?0时,x?0,所以f?x??0,f?x?无零点.ex综上可知,a?0或a?111时,f?x?无零点;a?时,f?x?只有一个零点;0?a?时,eeef?x?有两个零点.【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点个数.解题关??f(x)f键是求出函数的导数,由(x)确定单调性和最值,本题在最大值f(1)?0的情况下,?1?f???0通过证明f(a)?0和?a?,结合零点存在定理得出零点个数.难度较大,对学生的要求较高,属于困难题.③【答案】(1)(i)??a?1,(ii)答案见解析?b?1(2)证明见解析?f?(0)?0【分析】(1)(i)求出导数,由题可得?即可求出;f(0)?1?(ii)根据导数的正负即可求出.(2)求出导数,构造函数g(x)?aex(x?1)?1,利用零点存在定理可判断函数的变化情况,得出单调性即可判断.(1)x(i)f??x??ae?1,x?1第8页共30页?f?(0)?0?a?1?0?a?1由已知得,?,故?,解得?;b?1f(0)?1a?lnb?1????x(ii)f(x)?e?1(x??1),x?1显然f?(x)在(?1,??)上单调递增,又f?(0)?0,所以?1?x?0时,f?(x)?0;x?0时,f?(x)?0,因此f?x?在(?1,0)上单调递减,在(0,??)上单调递增.(2)1aex(x?1)?1f(x)?ae?ln(x?1)?lna,则f(x)?ae?,?x?1x?1x?x令g(x)?aex(x?1)?1,a?0,x??1,显然g(x)在[?1,??)上单调递增,1???1?又g(?1)?0,g???0,所以存在t???1,?,使得g(t)?0,a??a??当?1?x?t时,g(x)?0;x?t时,g(x)?0,所以?1?x?t时,f?(x)?0;x?t时,f?(x)?0,即f(x)在(?1,t)上单调递减;在(t,??)上单调递增,因此f(x)有唯一极小值点t.④【答案】(1)e(2)8【解析】【分析】(1)求出函数的导数,根据导数的几何意义求出f?x?在x??1处的切线方程,根据切线与y轴交于点?0,e???1?a2?,即可求得;e?x?1(2)法一:由(1)知f?x??xe数g?x??xex?1?e,则不等式可化为xex?1?b?x?1??e?0,构造函?b?x?1??e,利用导数并讨论导数的正负,从而求得存在x0???2,???,g?x?min?g?x0??x0ex0?1?b?x0?1??e?0,分离参数,表示出b??x0?1?ex0?1,构造2e?3?e新函数,结合导数求得?b?3e,进而求得答案;3法二:讨论x的取值范围,从而分离出参数b,在x?1,-2?x<1的情况下,分别构造2e?3?e函数,利用导数判断单调性求的最值,最后确定?b?3e,由此可得答案;3第9页共30页2e?3?e法三:令x??2,由f?x??b?x?1?可解得b???1,从而取m?0,证明证当3不等式xex?1?e?0在x??2时恒成立,令x?2,由f?x??b?x?1?,解得b?3e,b?0时,故取M?8,再证当b?8时,不等式xe得答案.【小问1详解】依题意得:f??x???x?1?e所以f???1??0.又因为f??1???x?1x?1?8?x?1??e?0在x??2时恒成立,由此求,1?a,e21?a,2e??1??,e2?所以f?x?在x??1处的切线方程为y??因为曲线y?f?x?在x??1处的切线与y轴交于点?0,e?所以?11?a?e?,e2e2解得a?e.【小问2详解】解法一:由(1)知f?x??xe设g?x??xex?1x?1?e,则不等式可化为xex?1?b?x?1??e?0,?b?x?1??e,x?1则g??x???x?1?e?b,x?1设??x??g??x?,则???x???x?2?e因为x???2,???,所以???x??0,,所以??x?在??2,???单调递增,即g??x?在??2,???单调递增,?3所以g??x?min?g???2???e?b,①若b??e?3,则g??x??g???2??0,所以g?x?在??2,???单调递增,所以g?x?min?g??2???2e?3?3b?e?0,第10页共30页2e?3?e解得b?,32e?3?e所以?b??e?3;3②若b??e?3,则g??x?min?g???2??0,因为g??x?在??2,???单调递增,当?e?3?b?0时,g??0??1?b?0,e则存在x???2,0?使得g??x??0,当b?0时,取n?max?0,lnb?1?,则g?n??0,所以存在x1???2,n?,使得g??x1??0,综上,当b??e?3时,存在x0???2,???,使得g??x0??0,即?x0?1?ex?1?b?0,0故当?2?x?x0时,g??x??0,则g?x?在??2,x0?单调递减,当x?x0时,g??x??0,则g?x?在?x0,???单调递增,所以g?x?min?g?x0??x0e由?x0?1?ex0?1x0?1?b?x0?1??e?0,(*)?b?0,得b??x0?1?ex0?1,x0?1代入(*)得x0e??x0?1?ex0?1?x0?1??e???x02?x0?1?ex0?1?e?0,设F?x???x?x?1e2??x?1?e,???x?2??x?1?ex?1,则F??x???x?x?2e2??x?1因为x??2,所以由F??x??0得x?1,当?2?x?1时,F??x??0,所以F?x?在??2,1?上单调递增,当x?1时,F??x??0,所以F?x?在?1,???单调递减,又因为F??2???e?e?0,F?1??1?e?0,F3?2??0,第11页共30页所以当x?2时,F?x??0,所以满足?x0?x0?1e又因为b??x0?1?e设H?x???x?1?ex0?1?2?x0?1?e?0的x0的取值范围是?2?x0?2,,x?1x?1,则H??x???x?2?e?0,所以H?x?在??2,???单调递增,所以?e?3?b?3e,2e?3?e综上所述?b?3e,32e?3?e又因为?1??0,8?3e?93所以m?0,M?8,所以M?m?8解法二:由(1)知:f?x??xex?1.?e,则xex?1?b?x?1??e?0,①当x?1时,左边等于1?e?0恒成立,此时b?R;xex?1?e②当x?1时,原不等式可化为b?对任意x??1,???恒成立.x?1设h?x??xe?e,则h??x?x?1x?1x??2?x?1?ex?1?e?x?1?2.设k?x??x?x?1e2??x?1?e,则k??x???x2?x?2?ex?1??x?2??x?1?ex?1.因为x?1,所以k??x??0,所以k?x?在?1,???上单调递增.又因为h??2??k?2??0,所以x?2是h??x?在?1,???上的唯一零点,所以当1?x?2时,h??x??0,h?x?在?1,2?上单调递减,当x?2时,h??x??0,h?x?在?2,???上单调递增,所以h?x?min?h?2??3e,所以b?3e.第12页共30页xex?1?e③当-2?x<1时,原不等式可化为b?,x?1此时对于②中函数k?x?的导函数,k??x??x?x?2e2??x?1??x?2??x?1?ex?1,可知当-2?x<1时,k??x??0,所以k?x?在-2?x<1单调递减,且k??2??5e所以当-2?x<1时,k?x??k??2??0,所以当-2?x<1时,h??x??0,所以h?x?在?2,1?上单调递减,所以h?x??3?e?0,?max2e?3?e,?h(?2)?32e?3?e所以b?,32e?3?e综上所述?b?3e,32e?3?e又因为?1??0,8?3e?93所以m?0,M?8,所以M?m?8.解法三:令x??2,由f?x??b?x?1?得??2?e?3??3b?e,2e?3?e解得b???1,3取m?0,下证当b?0时,不等式xex?1?e?0在x??2时恒成立,设g?x??xex?1?e,则g??x???x?1?ex?1,由g??x??0可得x??1,当?2?x??1时,g??x??0,所以g?x?单调递减,当x??1时,g??x??0,所以g?x?单调递增,所以g?x?min?g??1???1?e?0,所以m?0符合题意;e2令x?2,由f?x??b?x?1?得2e?b?2?0,第13页共30页解得b?3e,取M?8,下证当b?8时,不等式xe设h?x??xex?1x?1?8?x?1??e?0在x??2时恒成立,?e,则h??x???x?1?ex?1,令h??x??0,则x??1,所以当?2?x??1时,h??x??0,则h?x?在??2,1?上单调递减,当x??1时,h??x??0,则h?x?在?1,???上单调递增,所以h?x??h??1??e?1?0,e2x?1所以当?2?x?1时,xe当x?1时,x?1?0,?8?x?1??e?0恒成立.所以8?x?1??3e?x?1?,所以xex?1?8?x?1??e?xex?1?3e?x?1??e,x?1设k?x??xe?3e?x?1??e,则k??x???x?1?ex?1?3e,x?1设??x??k??x?,则???x???x?2?e?0,所以k??x?在?1,???单调递增,且k??2??0,所以当1?x?2时,k??x??0,则k?x?在?1,2?单调递减,当x?2时,k??x??0,则k?x?在?2,???单调递增,所以k?x?min?k?2??0,所以k?x??0,所以xex?1?8?x?1??e?0,x?1综上当M?8时,不等式xe所以M?m?8.?8?x?1??e?0在x??2时恒成立,【点睛】本小题主要考查函数的单调性?导数?导数的几何意义及其应用?不等式等基础知第14页共30页识,考查推理论证能力?运算求解能力?创新意识等,考查分类与整合思想?数形结合思想?一般与特殊思想,涉及的核心素养有直观想象?数学抽象?数学运算?逻辑推理等,体现综合性与创新性.⑤【答案】(1)x?y?1?0(2)①2②见解析【解析】【详解】试题分析:(1)将a?1代入到函数f?x?,再对f?x?求导,分别求出f?0?和f\'?0?,即可求出切线方程;(2)①若函数f?x?在定义域上为单调增函数,则f\'?x??0恒成立,则先证明ex?x?1,构造新函数,求出单调性,再同理可证lnx?x?1,即可求出a的最?t?1?t?1?,累加后利用等大整数值;②由①得e?ln?x?2?,令x?,可得e?t?1??ln?tt??xt比数列求和公式及放缩法即可得证.试题解析:(1)当a?1时,f?x??e??x?1?ln?x?1??xx∴f?0??1,又f\'?x??e?ln?x?1?,∴f\'?0??1,x则所求切线方程为y?1?x,即x?y?1?0.(2)由题意知,f\'?x??e?ln?x?a?,x若函数f?x?在定义域上为单调增函数,则f\'?x??0恒成立.①先证明ex?x?1.设g?x??e?x?1,则g\'?x??e?1,xx则函数g?x?在???,0?上单调递减,在?0,???上单调递增,∴g?x??g?0??0,即ex?x?1.同理可证lnx?x?1∴ln?x?2??x?1,∴e?x?1?ln?x?2?.x当a?2时,f\'?x??0恒成立.当a?3时,f\'?0??1?lna?0,即f\'?x??e?ln?x?a??0不恒成立.x综上所述,a的最大整数值为2.②由①知,e?ln?x?2?,令x?x?t?1,t第15页共30页∴e?t?1t??t?1??t?1??ln??2??ln???t??t??t?1?.??ln?t??2t∴e?t?1?3?由此可知,当t?1时,e0?ln2.当t?2时,e?1??ln?,?2??4??n?1?.当t?3时,e??ln?,??,当t?n时,e?n?1??ln?n??3???23n?3??4??n?1?.累加得e0?e?1?e?2???e?n?1?ln2??ln???ln?????ln?n??2??3???1?1????e??1?e,又e0?e?1?e?2???e?n?1?11e?11?1?ee?3??4?∴ln2??ln???ln??2??3?23n23ne?n?1?.????ln??n?e?1?n点睛:(1)导数综合题中对于含有字母参数的问题,一般用到分类讨论的方法,解题时要注意分类要不重不漏;(2)对于恒成立的问题,直接转化为求函数的最值即可;(3)对于导数中,数列不等式的证明,解题时常常用到前面的结论,需要根据题目的特点构造合适的不等式,然后转化成数列的问题解决,解题时往往用到数列的求和及放缩法.⑥【答案】(1)a?1,b?1;证明见解析(2)证明见解析【解析】【分析】(1)求出函数的导函数,依题意可得f??1??0,f???1???1?1,即可解得a、exb,从而得到f?x???x?1??e?1?,设f?x?在??1,0?处的切线l方程为y?h?x?,令F?x??f?x??h?x?,利用导数说明函数的单调性,即可得证;?,???1?(2)由(1)知f?x1??h?x1?,设h?x??m的根为x1则x1me??x1,,即可得到x11?e在设y?f?x?在?0,0?处的切线方程为y?t?x?,令T?x??f?x??t?x?,利用导数说明?,??m,??x2,函数的单调性,即可得到f?x2??t?x2?.设t?x??m的根为x2则x2再说明x2即可得证;【小问1详解】第16页共30页解:将x??1代入切线方程?e?1?x?ey?e?l?0,有y?0,所以f??1??0,所以f??1????1?b???1??a??0,?e?b1?a??1?,eex又f??x???x?b?1?e?a,所以f???1??若a?1,则b?2?e?0,与b?0予盾,故a?1,b?1.e∴f?x???x?1?e?1,f?0??0,f??1??0,?x?设f?x?在??1,0?处的切线l方程为y?h?x???令F?x??f?x??h?x?,即F?x???x?1?e?1??x?1??1??x?1?,e????1?1??1??x?1?,所以F??x???x?2?ex?,e?e?x当x≤?2时,F??x???x?2?e?11???0,eex当x??2时,设G?x??F??x???x?2?e?1x,G??x???x?3?e?0,e故函数F??x?在??2,???上单调递增,又F???1??0,所以当x???2,?1?时,F??x??0,当x???1,???时,F??x??0,综合得函数F?x?在区间???,?1?上单调递减,在区间??1,???上单调递增,故F?x??F??1??0,即函数y?f?x?的图象总在切线l的上方(除切点外).【小问2详解】解:由(1)知f?x1??h?x1?,?,则x1???1?设h?x??m的根为x1me,1?e??x1,???f?x1??h?x1?,故x1又函数h?x?单调递减,故h?x1设y?f?x?在?0,0?处的切线方程为y?t?x?,因为f?0??0,f??x???x?2?e?1,所以f??0??1,所以t?x??x.x令T?x??f?x??t?x???x?1?e?1?x,T??x???x?2?e?2,?x?x第17页共30页当x≤?2时,T??x???x?2?e?2??2?0,x当x??2时,设H?x??T??x???x?2?e?2,则H??x???x?3?e?0,xx故函数T??x?在??2,???上单调递增,又T??0??0,所以当x???2,0?时,T??x??0,当x??0,???时,T??x??0,综合得函数T?x?在区间???,0?上单调递减,在区间?0,???上单调递增,所以T?x??T?0??0,即f?x2??t?x2?.?,则x2??m,设t?x??m的根为x2???f?x2??t?x2?,又函数t?x?单调递增,故t?x2??x2,又x1??x1,故x2??x1??m???1?所以x2?x1?x2??m?1?2e?me??1?.?1?e?1?e【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.⑦【答案】(1)y?2x(2)(??,?1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a分类讨论,对x分(?1,0),(0,??)两部分研究【小问1详解】f(x)的定义域为(?1,??)当a?1时,f(x)?ln(1?x)?x,f(0)?0,所以切点为xe(0,0)f?(x)?11?x?x,f?(0)?2,所以切线斜率为21?xe所以曲线y?f(x)在点(0,f(0))处的切线方程为y?2x【小问2详解】f(x)?ln(1?x)?axex第18页共30页x21a(1?x)e?a1?xf(x)???1?xex(1?x)ex???设g(x)?e?a1?xx?2???x21?若a?0,当x?(?1,0),g(x)?e?a1?x?0,即f?(x)?0所以f(x)在(?1,0)上单调递增,f(x)?f(0)?0故f(x)在(?1,0)上没有零点,不合题意?x2?若?1

更多推荐

函数,单调,切线,导数,零点