2023年12月20日发(作者:新桑塔纳2022款报价)

摘 要

东风EQ2080越野汽车作为我国较先进的军用和民用汽车,有着广泛的用途和重要的作用,在多轴驱动的汽车上,为了将输出的动力分配给各驱动桥设有分动器。越野汽车在良好道路行驶时,为减小功率消耗及传动系机件和轮胎磨损,一般要切断通前桥动力。在越野行驶时,根据需要接合前桥并采用低速档,增加驱动轮数和驱动力。

分动器的功用就是将分动器输出的动力分配到各驱动桥,并且进一步增大扭矩。分动器也是一个齿轮传动系统,它单独固定在车架上,其输入轴与分动器的输出轴用万向传动装置连接,分动器的输出轴有若干根,分别经万向传动装置与各驱动桥相连。

本设计主要说明了越野车三轴式分动器的设计和计算过程,设计部分较详细的叙述了分动器的设计过程,选择结构方案、主要参数、齿轮设计、轴设计、操纵机构及其壳体的设计。计算部分分为中心距,传动比的计算,齿轮和轴的校核。

关键词:三轴式;分动器;校核;高低档;齿轮传动。

ABSTRACT

Dongfeng EQ2080 off-road vehicle as advanced military and civilian cars, has wide

usage and important role in the drive shaft, car, in order to be allocated to each of the output

power drive with thansfer. Off-road vehicle in good roads, to reduce the power consumption

of the transmission parts and tire wear, general to cut through front axle. On a cross-country

driving, front axle and adopted according to the jointing, increase speed and driving wheel

drive.

Thansfer function will be assigned to the power output thansfer every thing, and

increase torque. Thansfer is also a gear transmission system, it alone, its frame fixed in the

input shaft and the output shaft with universal thansfer transmission device connected,

thansfer output shaft several root, the universal transmission device connected with each

thing.

This design mainly explains the suv triaxial type thansfer design, detail design part

describes the design process, choose thansfer structure scheme, main parameters and gear

axle design, the design, the design of the control and its shell. The computation part into the

center distance ratio of calculation, and gear shaft of checking.

Keywords:

Three axis;Thansfer;Checking;High garde;Gear.

目 录

摘要 ·················································································································································· I

Abstract ············································································································································· II

第1章 绪论 ·································································································································· 1

1.1 概述 ····································································································································· 1

1.2 分动器类型 ························································································································ 1

1.3 分动器功用及意义 ··········································································································· 3

1.4 分动器发展 ························································································································ 3

1.5 设计内容 ···························································································································· 3

第2章 分动器结构的确定及主要参数的计算 ··························································· 5

2.1 设计所依据的主要技术参数 ························································································· 5

2.2 零部件结构方案分析 ······································································································ 5

2.2.1 齿轮形式 ················································································································ 5

2.2.2 传动机构形式 ······································································································· 5

2.3 各档位传动比计算 ··········································································································· 6

2.4 中心距A确定 ··················································································································· 8

2.5 本章小结 ···························································································································· 9

第3章 分动器的齿轮设计 ··································································································10

3.1 模数的确定 ·······················································································································10

3.2 齿形、压力角及螺旋角 ································································································· 11

3.3 齿宽 ···································································································································· 11

3.4 各档齿轮齿数的确定 ·····································································································12

3.4.1 低速档齿轮副齿数的确定 ·················································································12

3.4.2 对中心距进行修正 ······························································································12

3.4.3 确定其他齿轮的齿数 ·························································································13

3.5 齿轮损坏的原因和形式 ·································································································14

3.6 齿轮的材料选择 ··············································································································14

3.7 齿轮的强度计算 ··············································································································15

3.7.1 轮齿的弯曲应力 ··································································································16

3.7.2 轮齿接触应力 ······································································································18

3.8 本章小结 ···························································································································20

第4章 轴的设计 ·······················································································································21

4.1 轴的尺寸初选 ··················································································································21

4.2 轴的结构设计 ··················································································································21

4.3 花键的形式和尺寸 ··········································································································24

4.4 轴承的设计 ·······················································································································25

4.5 齿轮和轴上的受力计算 ·································································································26

4.6 轴的强度校核 ··················································································································27

4.7 本章小结 ···························································································································30

第5章 分动器操纵机构及其壳体的设计 ····································································31

5.1 分动器的操纵机构设计 ·································································································31

5.2 分动器壳体 ·······················································································································31

5.3 总成的装配 ·······················································································································31

5.4 本章小结 ···························································································································32

结论 ···················································································································································33

参考文献 ········································································································································34

致谢 ···················································································································································35

附录 ···················································································································································36

第1章 绪 论

1.1 概述

东风EQ2080越野汽车作为我国较先进的军用和民用汽车,有着广泛的用途和重要的作用,在多轴驱动的汽车上,为了将输出的动力分配给各驱动桥设有分动器。分动器的功用就是将变速器输出的动力分配到各驱动桥,并且进一步增大扭矩。分动器也是一个齿轮传动系统,它单独固定在车架上,其输入轴与变速器的输出轴用万向传动装置连接,分动器的输出轴有若干个,分别经万向传动装置与各驱动桥相连。分动器一般都设有高低档,以进一步扩大在困难地区行驶时的传动比及排挡数目。越野汽车在良好道路行驶时,为减小功率消耗及传动系机件和轮胎磨损,一般要切断通前桥动力。在越野行驶时,根据需要接合前桥并采用低速档,增加驱动轮数和驱动力。

越野车需要经常在坏路和无路情况下行驶,尤其是军用汽车的行驶条件更为恶劣,这就要求增加汽车驱动轮的数目,因此,越野车都采用多轴驱动。例如,如果一辆前轮驱动的汽车两前轮都陷入沟中(这种情况在坏路上经常会遇到),那汽车就无法将发动机的动力通过车轮与地面的磨擦产生驱动力而继续前进。而假如这辆车的四个轮子都能产生驱动力的话,那么,还有两个没陷入沟中的车轮能正常工作,使汽车继续行驶。在多轴驱动的汽车上,为了将输出的动力分配给各驱动桥设有分动器。

1.2 分动器类型

(1)分时驱动(Part-time 4WD)

这是一种驾驶者可以在两驱和四驱之间手动选择的四轮驱动系统,由驾驶员根据路面情况,通过接通或断开分动器来变化两轮驱动或四轮驱动模式,这也是一般越野车或四驱SUV最常见的驱动模式。最显著的优点是可根据实际情况来选取驱动模式,比较经济。

(2)全时驱动(Full-time 4WD)

这种传动系统不需要驾驶人选择操作,前后车轮永远维持四轮驱动模式,行驶时

将发动机输出扭矩按50:50设定在前后轮上,使前后排车轮保持等量的扭矩。全时驱动系统具有良好的驾驶操控性和行驶循迹性,有了全时四驱系统,就可以在铺覆路面上顺利驾驶。但其缺点也很明显,那就是比较废油,经济性不够好。而且,车辆没有任何装置来控制轮胎转速的差异,一旦一个轮胎离开地面,往往会使车辆停滞在那里,不能前进。

(3)适时驱动(Real-time 4WD)

采用适时驱动系统的车辆可以通过电脑来控制选择适合当下情况的驱动模式。在正常的路面,车辆一般会采用后轮驱动的方式。而一旦遇到路面不良或驱动轮打滑的情况,电脑会自动检测并立即将发动机输出扭矩分配给前排的两个车轮,自然切换到

四轮驱动状态,免除了驾驶人的判断和手动操作,应用更加简单。不过,电脑与人脑相比,反应毕竟较慢,而且这样一来,也缺少了那种一切尽在掌握的征服感和驾驶乐趣。

图1.1 东风EQ2080越野车

本设计为东风EQ2080越野车手动三轴式分动器,驾驶者可以在4驱和6驱之间进

行手动选择,如图1.1所示,此车为6×6或者4×4驱动。

1.3 分动器的功用及意义

分动器的功用就是将分动器输出的动力分配到各驱动桥,并且进一步增大扭矩。分动器也是一个齿轮传动系统,它单独固定在车架上,其输入轴与分动器的输出轴用万向传动装置连接,分动器的输出轴有若干根,分别经万向传动装置与各驱动桥相连。汽车全轮驱动,可在冰雪、泥沙和无路的地区地面行驶。

由于现代车辆发动机输出的转矩比较大,即使在高速运转时仍可输出较大的转矩,加上变速箱的传动比变化范围较大,能够很好地满足车辆的使用要求,因此,依据越野车的的主要技术指标、发动机功率、转速和车辆行驶条件,来确定分动器的结构型式的选择、设计参数的选取及各大零部件的设计计算。

1.4 分动器发展

分动器已经发展到第五代:第一代的分动器基本上为分体结构,直齿轮传动、双换档轴操作、铸铁壳体;第二代分动器虽然也是分体结构,但已改为全斜齿齿轮传动、单换档轴操作和铝合金壳体,一定程度上提高了传动效率、简便了换档、降低了噪音与油耗;第三代分动器增加了同步器,使多轴驱动车辆具备在行进中换档的功能;第四代分动器的重大变化在于采用了联体结构以及行星齿轮加链传动,从而优化了换档及大大提高了传动效率和性能;第五代分动器壳体采用压铸铝合金材料、齿型链传动输出,其低挡位采用行星斜齿轮机构,使其轻便可靠、传动效率高、操纵简单、结构紧凑、噪音更低。分动器的结构特点是前输出轴传动系统皆采用低噪声的多排链条传动。链传动相对齿轮传动的优点有传动平稳、嗓声小、中心距误差要求低、轴承负荷较小及防止共振。分动器功能上的特点是转矩容量大、重量轻、传动效率高、噪音小、换挡轻便准确,大大改善了多驱动车辆的转矩分配,进而提高了整车性能。

1.5 设计内容

本次设计主要是依据东风EQ2080越野车的有关参数,通过分动器各部分参数的选择和计算,设计出一种基本符合要求的三轴式分动器。本设计主要完成下面一些主要工作:

1、参数计算。包括分动器传动比计算、中心距计算、齿轮参数计算、各挡齿轮齿

数的分配;

2、分动器齿轮设计计算。分动器齿轮几何尺寸计算;分动器齿轮的强度计算及材料选择;计算各轴的扭矩和转速;齿轮强度计算及检验;

3、分动器轴设计计算。包括各轴直径及长度计算、轴的结构设计、轴的强度计算

4、分动器轴承的选择及校核;

5、分动器操纵机构的设计选用;

6、分动器箱体的设计。

第2章 分动器结构的确定及主要参数的计算

2.1 设计所依据的主要技术参数

本设计是根据东风EQ2080越野车手动三轴式分动器而开展的,设计中所采用的相关参数均来源于此种车型,具体参数如下所示

最大输入转速:3000r/min;

最小输入转速:600r/min;

发动机最大转矩 353N·m

分动器额定功率40kw

最高车速 80km/h

轮胎规格 9.00-18

整备质量 5320kg

最大载重 2500kg

分动器的主要参数(中心距、齿轮模数、轴径等)选择可按照变速器的参数选择计算公式进行。

2.2 零部件结构方案分析

2.2.1 齿轮形式

齿轮分为直齿圆柱齿轮和斜齿圆柱齿轮两种。

与直齿圆柱齿轮比较,斜齿圆柱齿轮有使用寿命长、运转平稳、工作噪声低等优点;缺点是制造时稍有复杂,工作时有轴向力,这对轴承不利。分动器中的常啮合齿轮均采用斜齿圆柱齿轮。

2.2.2 传动机构形式

分动器的设计类比于变速器和减速器的设计。现在汽车大多数都采用中间轴式变速器,由《汽车构造》中EQ2080型汽车分动器的结构图,采用输入轴与后轮输出轴同轴的形式,输入轴的后端经轴承在后轮输出轴的轴孔内,后轮输出要经过两对齿轮副的传递,因此传动效率有所降低。

三轴分动器传动结构如图2.1

图2.1 三轴式分动器结构示意图

2.3 各档位传动比计算

主减速比的计算:

i0?0.377nprrvamaxigh0.377?3000?0.445

(2.1)

80?1

i0??6.3

根据驱动车轮与路面的附着条件,档数和传动比

TemaxigI?Trr?G2?(2.2)

为了增强汽车在不好道路的驱动力,目前,四驱车一般用2个档位的分动器,分为高档和低档.本设计也采用2个档位。

选择最低档传动比时,应根据汽车最大爬坡度、驱动轮与路面的附着力、汽车的最低稳定车速以及主减速比和驱动轮的滚动半径等来综合考虑、确定。

汽车爬陡坡时车速不高,空气阻力可忽略,则最大驱动力用于克服轮胎与路面间的滚动阻力及爬坡阻力。故有

TemaxigIi0?T?mg(fcos?max?sin?max)?mg?max (2.3)

rr

则由最大爬坡度要求的分动器低档传动比为

ig?mg?maxrrTemaxi0?

(2.4)

式中,m----汽车总质量;

g----重力加速度;

?max----道路最大阻力系数;

rr----驱动轮的滚动半径;

Temax----发动机最大转矩;

io----主减速比;

?----汽车传动系的传

ig1?

?mg(fcos?max?sin?max)rrTemaxi0?T5230?9.8?(0.02?0.94?0.33)?0.445

353?6.3?0.96?3.79可求得变速器一挡传动比为

ig1?

G2?rr

(2.5)

Temaxi0?T式中,G2----汽车满载静止于水平路面时驱动桥给路面的载荷;

φ----路面的附着系数,计算时取φ=0.7

ig1??G2?rrTemaxi0?T7730?9.8?0.7?0.445

353?6.3?0.96?11通过以上计算可得到3.79<ig1<11,在本设计中,取ig1?7。

根据一档传动比可求得低档传动比 即

iF1?0,377?0.445?600

1?6.3?ig1?2.05根据设计要求

iFg?1.08

2.4 中心距A确定

将中间轴与第二轴之间的距离称为中心距A。它是一个基本参数,其大小不仅对分动器的外形尺寸、体积个质量大小,而且对轮齿的接触强度有影响。中心距越小,齿轮的接触应力越大,齿轮寿命越短。因此,最小允许中心距应当由保证轮齿有必要的接触强度来确定。分动器的轴经轴承安装在壳体上,从布置分动器的可能与方便和不因同一垂直面上的两轴承孔之间的距离过小而影响壳体的强度考虑,要求中心距取大些。还有,分动器中心取得过小,会使分动器长度增加,并因此使轴的刚度被削弱和使齿轮的啮合状态变坏。

根据经验公式:

A?KAC3Temax (2.6)

式中,为分动器中心距(mm);KAC为中心距系数,取KA=17~19.5;Temax为输入最大扭矩(N m)。

可确定中心距:

A?(17~19.5)?3353?(120.15~137.87)mm

为检测方便,圆整中心距A=130mm。

2.5 本章小结

本章主要依据分动器的要求确定了齿轮的形式并通过结构确定了传动的形式。根据车辆的主要技术参数,通过计算确定了传动比和中心距,为齿轮的齿数分配及轴的选取提供了依据。

第3章 分动器的齿轮设计

各挡位齿轮在分动器中的位置安排,考虑到齿轮的受载状况。承受载荷大的低挡齿轮,安置在离轴承较近的方,以减小铀的变形,使齿轮的重叠系数不致下降过多。分动器齿轮主要是因接触应力过高而造成表面点蚀损坏,因此将高挡齿轮安排在离两支承较远处。该处因轴的变形而引起齿轮的偏转角较小,故齿轮的偏载也小。

3.1 模数的确定

齿轮模数是一个重要参数,并且影响它的选取因素又很多,如齿轮的强度、质量、噪声、工艺要求、载荷等。

决定齿轮模数的因素很多,其中最主要的是载荷的大小。由于高档齿轮和低档齿轮载荷不同,股高速挡和低速档的模数不宜相同。从加工工艺及维修观点考虑,同一齿轮机械中的齿轮模数不宜过多。分动器齿轮模数的范围如表3.1

表3.1 汽车变速器齿轮的法向模数mn

车 型

模数mn/mm

乘用车的发动机排量V/L

1.0>V≤ 1.6

2.25~2.75

1.6<V≤ 2.5

2.75~3.00

货车的最大总质量ma/t

6.0<ma≤14.0

3.50~4.50

ma≥14.0

4.50~6.00

所选模数应符合国家标准GB/T1357—1987的规定,。接合齿和啮合套多采用渐开线齿形。由于工艺上的考虑,同分动器中的结合齿采用同一模数。其选取的范围是:轿车及轻、中型货车为2~3.5;重型货车为3.5~5。选取较小模数并增多齿数有利于换挡。

选取各齿轮副模数如下:

常啮合齿轮:mn=4mm;

低速档:mn=4mm,

高速挡:mn=4mm。

3.2 齿形、压力角及螺旋角

汽车变速器的齿形、压力角及螺旋角按表3.2选取。

表3.2 汽车分动器齿轮的齿形、压力角与螺旋角

项目

车型

轿车

一般货车

重型车

齿形

高齿并修形的齿形

GB1356-78规定的标准齿形

GB1356-78规定的标准齿形

压力角α

螺旋角β

14.5?,15?,16?,16.5?

20?

25 低挡、倒挡齿轮22.5,??25?~45?

18?~26?

小螺旋角

压力角较小时,重合度较大,传动平稳,噪声较低;压力角较大时,可提高轮齿的抗弯强度和表面接触强度。对于轿车,为加大重合度以降低噪声,应取用小些的压力角;对于货车,为提高齿轮承载能力,应取用大些的压力角。

实际上,因国家规定的标准压力角为20?,所以分动器齿轮采用的压力角为20?。

斜齿轮在分动器中得到广泛应用。选取斜齿轮的螺旋角,应该注意它对齿轮工作噪声、齿轮的强度和轴向力有影响。在齿轮选用大些的螺旋角时,使齿轮啮合的重合度增加,因而工作平稳、噪声降低。实验还证明:随着螺旋角的增大,齿的强度也相应提高。不过当螺旋角大于 时,其抗弯强度骤然下降,而接触强度仍继续上升。因此,从提高低挡齿轮的抗弯强度出发,并不希望用过大的螺旋角,以 15°~25°为宜;而从提高高挡齿轮的接触强度和增加重合度着眼,应当选用较大的螺旋角。但螺旋角太大,会使轴向力及轴承载荷过大。初选低速档啮合齿轮螺旋角β=20°。

3.3 齿宽

齿轮宽度大,承载能力高。但齿轮受载后,由于齿向误差及轴的挠度变形等原因,沿齿宽方向受力不均匀,因而齿宽不宜太大。通常可以根据齿轮模数来选择齿宽b。

b?kcmn (3.1)式中:kc-齿宽系数,直齿轮取kc?4.4~7.0,斜齿轮取kc?7.0~8.6;

mn-法面模数。

齿宽可根据下列公式初选:直齿轮b=(4.5~8.0)m,斜齿轮b=(7.0~8.6)mn。

综合各个齿轮的情况,均为斜齿轮:

设计b=4×(7.0~8.6)=28~34.4,齿宽均选为30mm。

3.4 各档齿轮齿数的确定

3.4.1 低速档齿轮副齿数的确定

在初选中心距、齿轮模数和螺旋角以后,可根据档数、传动比和传动方案来分配各档齿轮的齿数。

齿数和:

2Acos?2?130?cos20?S?z1?z2???61.1 (3.2)

mn4圆整取S=61

根据经验数值,一轴低速档齿轮齿数在z1=24~28之间选取。不妨通过下列关系对着三个数值得出的参数进行比较。

通过比较可以得出z1=25,z2=36时,i低=2.074,与设计要求2.05最接近。

所以:z1=25,z2=36

3.4.2 对中心距进行修正

因为计算齿数和z?后,经过取整数使中心距有了变化,所以应根据取定的z?和齿轮变位系数重新计算中心距A,再以修正后的中心距A作为各挡齿轮齿数分配的依据,故中心距变为

A?Smn61?4?mm?129.8mm (3.3)

2cos?2?cos20修正中心距,取A=130。

重新确定螺旋角β,其精确值应为

?12?cosmnS4?61?cos?20.2052??20?12?19??

2A2?130下面根据方程组:

2Acos?122?130?cos20?z3?z4???61mn4z3z25?i低1?2.05??1.4236z4z236

确定常啮合齿轮副齿数分别为z3?36,z4?25。

重新确定螺旋角β,其精确值为

?34?cos?1

mnS4?61?cos?1?20.2052??20?12?19??

2A2?130

3.4.3 确定其他齿轮的齿数

齿轮5为中桥输出轴齿轮,因此齿轮5与后桥输出轴齿轮4各参数应相同。

低速档齿轮:z7z25

?i高4?1.08??0.75 (3.4)z6z336根据,tan?34z3z36?(1?7)??(1?0.75)?1.0328

tan?67z3?z4z636?25tan20.2052??tan?19.6132??20?36?48??

1.0328?1可以得出?672Acos?672?130?cos19.6132?z6?z7???61.22,取61

mn4于是可得,z6?34.86,z7?26.14圆整取z6?35

。,z7?26。重新确定螺旋角β,其精确值为

?67?cos?1mn(z6?z7)4?61?cos?1?19.6132

2A2?130齿轮的设计参数如表3.3所示:

表3.3 齿轮各参数数据

齿轮

齿轮齿数

实际传动比i

螺旋角β

法面模数mn(mm)

法面齿顶高系数han

法面顶隙系数cn

分度圆压力角αn

分度圆直径d(mm)

中心距A(mm)

齿顶高ha(mm)

齿根高hf(mm)

齿全高h(mm)

有效齿宽b(mm)

当量齿数zv

??高速档

输入轴

齿轮6

35

0.745

中间轴

齿轮7

26

低速档

输入轴

齿轮1

25

1.44

中间轴

齿轮2

36

常啮合

输出轴

齿轮3

36

1.44

中间轴

齿轮4

25

19?53?16??

4

1

0.25

20°

149.02

130

4

5

9

30

42.36 31.45

110.68

20?12?19??

4

1

0.25

20°

106.56

130

4

5

9

30

30.25 43.56 43.56

153.44

20?12?19??

4

1

0.25

20°

153.44

130

4

5

9

30

30.25

106.56

3.5 齿轮损坏的原因和形式

齿轮在啮合过程中,轮齿根部产生弯曲应力,过渡转角处又有应力集中,故当齿轮受到足够大的载荷作用,其根部的弯曲应力超过材料的许用应力时,轮齿就会断裂。这种由于强度不够而产生的断裂,其断面为一次性断裂所呈现的粗状颗粒面。在汽车分动器中这种情况很少发生。而最常见的断裂则是由于在重复载荷作用下使齿根受拉面的最大应力区出现疲劳裂缝而逐渐扩展到一定深度后所产生的折断,其疲劳断面在疲劳裂缝部分呈光滑表面,而突然断裂部分呈粗粒状表面[14]。分动器低挡小齿轮由于载荷大而齿数少、齿根较弱,其主要破坏形式就是这种弯曲疲劳断裂。

齿面点蚀是常用的高挡齿轮齿面接触疲劳强度的形式。齿面长期在脉动的接触应力作用下,会逐渐产生大量与齿面成尖角的小裂缝。啮合时由于齿面的相互挤压,使充满了润滑油的裂缝处油压增高,导致裂缝的扩展,最后产生剥落,使齿面上产生大量的扇形小麻点,即是所谓点蚀。点蚀使齿形误差加大而产生动载荷,甚至可能引起轮齿折断。通常是靠近节圆根部齿面处的点蚀较靠近节圆顶部齿面出的点蚀严重;主动小齿轮较被动大齿轮严重。

对于高速重载齿轮,由于齿面相对滑动速度高、接触压力大且接触区产生高温而使齿面间的润滑油膜破坏,使齿面直接接触。在局部高温、高压下齿面互相熔焊粘连,齿面沿滑动方向形成撕伤痕迹的损坏形式成为齿面胶合。在一般汽车变速器中,产生胶合损坏的情况较少。

增大轮齿根部齿厚,加大齿根圆角半径,采用高齿,提高重合度,增多同时啮合的轮齿对数,提高轮齿柔度,采用优质材料等,都是提高轮齿弯曲疲劳强度的措施。合理选择齿轮参数及变位系数,增大齿廓曲率半径,降低接触应力,提高齿面强度等,可提高齿面的接触强度。采用黏度大、耐高温、耐高压的润滑油,提高油膜强度,提高齿面强度,选择适当的齿面表面处理方法和镀层等,是防止齿面胶合的措施。

3.6 齿轮的材料选择

1、齿轮材料的选择原则

(1)满足工作条件的要求

不同的工作条件,对齿轮传动有不同的要求,故对齿轮材料亦有不同的要求。但是对于一般动力传输齿轮,要求其材料具有足够的强度和耐磨性,而且齿面硬,齿芯软。

(2)合理选择材料配对

如对硬度≤ 350HBS的软齿面齿轮,为使两轮寿命接近,小齿轮材料硬度应略高于大齿轮,且使两轮硬度差在30~50HBS左右。为提高抗胶合性能,大、小轮应采用不同钢号材料。

(3)考虑加工工艺及热处理工艺

大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁;中等或中等以下尺寸要求较高的齿轮常采用锻造毛坯,可选择锻钢制作。尺寸较小而又要求不高时,可选用圆钢作毛坯。软齿面齿轮常用中碳钢或中碳合金钢,经正火或调质处理后,再进行切削加工即可;硬齿面齿轮(硬度>350HBS)常采用低碳合金钢切齿后再表面渗碳淬火或中碳钢(或中碳合金钢)切齿后表面淬火,以获得齿面、齿芯韧的金相组织,为消除热处理对已切轮齿造成的齿面变形需进行磨齿。但若采用渗氮处理,其齿面变形小,可不磨齿,故可适用于内齿轮等无法磨齿的齿轮。

2、齿轮材料的选择

现代汽车分动器齿轮大都采用渗碳合金钢制造,使轮齿表面的高硬度与轮齿心部的高韧性相结合,以大大提高其接触强度、弯曲强度及耐磨性。在选择齿轮的材料及热处理时也应考虑其加工性能及制造成本。

国产汽车分动器齿轮的常用材料是20CrMnTi,也有采用20Mn2TiB,20MnVB,20MnCr5的。这些低碳合金钢都需随后的渗碳、淬火处理,以提高表面硬度,细化材料晶粒。为消除内应力,还要进行回火。

分动器齿轮轮齿表面渗碳层深度的推荐范围如下:

mn?3.5 渗碳层深度0.8~1.2mm

3.5<mn<5 渗碳层深度0.9~1.3mm

mn?5 渗碳层深度1.0~1.6mm

渗碳齿轮在淬火、回火后,要求轮齿的表面硬度为HRC58~63,心部硬度为HRC33~48。

某些轻型以下的载货汽车和轿车等分动器的小模数(mn?3.0~3.75)齿轮,采用了40Cr或35Cr钢并进行表面氰化处理。这种中碳铬钢具有满意的锻造性能及良好的强度指标,氰化钢热处理后变形小也是优点。但由于氰化层较薄且钢的含碳量又高,故接触强度和承载能力均受到限制。

3.7 齿轮的强度计算

与其它机械设备用变速器比较,不同用途汽车的分动器齿轮使用条件是相似的。

此外,汽车分动器齿轮用的材料、热处理方法、加工方法、精度级别、支撑方式也基本一致。如汽车分动器齿轮用低碳合金钢制造,采用剃齿或磨齿精加工,齿轮表面采用渗碳淬火热处理工艺,齿轮精度不低于7级。因此,比用于通用齿轮强度公式更为简化一些的计算公式来计算汽车齿轮,同样可以获得较为准确的结果。

3.7.1 轮齿的弯曲应力

(1)直齿轮弯曲应力公式为

?w?式中:?w-弯曲应力(MPa);

F1K?Kfbty (3.5)

F1-圆周力(N),F1?2Tgd;

Tg-计算载荷(N·m);

d-节圆直径(mm);

K?-应力集中系数,可近似取K?=1.65;

Kf-摩擦力影响系数,主、从动齿轮在啮合点上的摩擦力方向不同,对弯曲应力的影响也不同,主动齿轮Kf=1.1,从动齿轮Kf=0.9;

b-齿宽(mm);

t-端面齿距(mm),t??m;

m-模数;

y-齿形系数,如图3.1所示

图3.1齿形系数图

因为齿轮节圆直径d?mz,式中z为齿数,所以将上述有关参数代入式后得

?w?(2)斜齿轮的弯曲应力公式为

?w?式中:F1-圆周力(N),F1?2Tgd;

2TgK?Kf?mzKcy3 (3.6)

F1K? (3.7)

btyK?Tg-计算载荷(N·m);

d-节圆直径(mm),d??mnz?cos?,mn-法向模数(mm),z-齿数,?-斜齿轮螺旋角(?);

K?-应力集中系数,K??1.50;

b-齿面宽(mm);

t-法向齿距(mm),t??mn;

y-齿形系数,可按当量齿数zn?zcos3?在图4.1中查得;

K?-重合度影响系数,K??2.0。

将上述有关参数代入公式后,可得到斜齿轮的弯曲应力公式为

?w?2Tgcos?K??zmnyKCK?3 (3.8)

当计算载荷取作用到分动器输入轴上的最大转矩Temax时,对乘用车常啮合齿轮和高挡齿轮,许用应力在180~350MPa范围,对货车为100~250MPa范围。

当挂上低速档时传递的转矩最大,因此只要校核低速档时的弯曲应力就可以了。

挂上低速档时:

输入轴传递的转矩

T1?9550?P40?0.99?0.98?9550?N?m?617.7?103N?mm

n1600中间轴传递的转矩

P40?0.99?0.982?0.98T2?9550??9550?N?m?854.2?103N?mm

n1/i12600/1.44

低速档齿轮为斜齿轮,由齿轮的弯曲应力公式为

?w?2Tgcos?K??zmnyKCK?3

式中:y-齿形系数。由图4.1得y1?0.13,y2?0.145。

通过以上的计算,把各个参数代入公式后得

?w1??2Tg1cos?1?2K??z1mn3y1KCK?3?

2?617.7?10?cos20?1.53.14?25?43?0.13?8?2.0 =168MPa?100~250MPa

?w2?2Tg2cos?1?2K??z2mny2KCK?3

2?854.2?103?cos20??1.5?

3.14?36?43?0.145?8?2=145MPa?100~250Mpa

所以高低速档的齿轮的弯曲强度均合格。

3.7.2 轮齿接触应力

?j?0.418式中:?j-轮齿接触应力(MPa);

F-齿面上的法向力(N),F?Ft?cos?cos??,Ft为圆周力(N),Ft?2Tgd,FE?11????? (3.9)

b???b??zTg为计算载荷(N·m),d为节圆直径(mm),?为节点处压力角(?),?为齿轮螺旋角(?);

E-齿轮材料的弹性模量(MPa),E?2.1?105MPa;

b-齿轮接触的实际宽度(mm),斜齿轮用bcos?代替;

?z、?b-主、从动齿轮节点处的曲率半径(mm),直齿轮?z?rzsin?、?b?rbsin?,斜齿轮?z??rzsin??cos2?、?b??rbsin??cos2?,rz、rb主、从动齿轮节圆半径(mm)。

将作用在分动器输入轴上的载荷Temax2作为计算载荷时,变速器齿轮的许用接触应力见表3.4。

表3.4 变速器齿轮的许用接触应力

齿轮

渗碳齿轮

一挡和倒挡

常啮合齿轮和高挡

1900~2000

1300~1400

液体碳氮共渗齿轮

950~1000

650~700

?j/MPa

更多推荐

齿轮,分动,分动器,采用,汽车,强度,计算,设计