2023年12月27日发(作者:为什么很少人买小鹏汽车)
2023年普通高等学校招生全国统一考试(新高考全国Ⅰ卷)数注意事项:学本试卷共4页,22小题,满分150分.考试用时120分钟.1.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M???2,?1,0,1,2?,N?xx?x?6?0,则M?N?(2??)A.??2,?1,0,1?B.?0,1,2?)C.0C.??2?D.22.已知z?A.?i1?i,则z?z?(2?2iB.i??????3.已知向量a??1,1?,b??1,?1?,若a??b?a??b,则(D.1????)A.????14.设函数f?x??2A.B.?????1x?x?a?C.???1D.????1)在区间?0,1?上单调递减,则a的取值范围是(???,?2?B.??2,0?C.?0,2?D.?2,???x2x225.设椭圆C1:2?y?1(a?1),C2:?y2?1的离心率分别为e1,e2.若e2?3e1,则a?a4(A.)233B.2C.3D.6)6.过点?0,?2?与圆x2?y2?4x?1?0相切的两条直线的夹角为?,则sin??(A.1B.154C.104D.64
7.记Sn为数列?an?的前n项和,设甲:?an?为等差数列;乙:{A.甲是乙的充分条件但不是必要条件C.甲是乙的充要条件8.已知sin??????,cos?sin??}为等差数列,则(n)B.甲是乙的必要条件但不是充分条件D.甲既不是乙的充分条件也不是乙的必要条件131,则cos?2??2???(619D.?).79B.19C.?79二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据x1,x2,???,x6,其中x1是最小值,x6是最大值,则(A.x2,x3,x4,x5的平均数等于x1,x2,???,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,???,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,???,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,???,x6的极差用声压级来度量声音的强弱,定义声压级Lp?20?lg10.噪声污染问题越来越受到重视.其中常数p0?p0?0?是听觉下限阈值,p是实际声压.下表为不同声源的声压级:声源燃油汽车混合动力汽车电动汽车与声源的距离/m101010声压级/dBp,p0)60?9050?6040已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为p1,p2,p3,则().B.p2?10p3C.p3?100p0D.p1?100p2).A.p1?p22211.已知函数f?x?的定义域为R,f?xy??yf?x??xf?y?,则(A.f?0??0B.f?1??0C.f?x?是偶函数D.x?0为f?x?的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()B.所有棱长均为1.4m的四面体D.底面直径为1.2m,高为0.01m的圆柱体A.直径为0.99m的球体C.底面直径为0.01m,高为1.8m的圆柱体
三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14.在正四棱台ABCD?A1B1C1D1中,AB?2,A1B1?1,AA1?2,则该棱台的体积为______.15.已知函数f?x??cos?x?1(??0)在区间?0,2π?有且仅有3个零点,则?的取值范围是____.x2y216.已知双曲线C:2?2?1(a?0,b?0)的左、右焦点分别为F1,F2.点A在C上,点B在aby轴上,F1A?F1B,F2A??2F2B,则C的离心率为________.3??????????????????四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在?ABC中,A?B?3C,2sin?A?C??sinB.(1)求sinA;(2)设AB?5,求AB边上的高.18.如图,在正四棱柱ABCD?A1B1C1D1中,AB?2,AA1?4.点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2?1,BB2?DD2?2,CC2?3.(1)证明:B2C2∥A2D2;(2)点P在棱BB1上,当二面角P?A2C2?D2为150?时,求B2P.x19.已知函数f?x??ae?a?x.??(1)讨论f?x?的单调性;(2)证明:当a?0时,f?x??2lna?3.2
20.设等差数列?an?的公差为d前n项和.n2?n,且d?1.令bn?,记Sn,Tn分别为数列?an?,?bn?的an(1)若3a2?3a1?a3,S3?T3?21,求?an?的通项公式;(2)若?bn?为等差数列,且S99?T99?99,求d.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量Xi服从两点分布,且P?Xi?1??1?P?Xi?0??qi,i?1,2,???,n,则?n?nE??Xi???qi.记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E?Y?.?i?1?i?1?1?22.在直角坐标系xOy中,点P到x轴的距离等于点P到点?0,?的距离,记动点P的轨迹?2?为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于33.
参考答案一、单选题1、【答案】C【解析】方法一:直接法∵N?x|x2?x?6?0=?x|x??2或x?3?,M???2,?1,0,1,2?,∴M?N???2?。方法二:代入验证法将M中的元素依次代入不等式x2?x?6?0验证,只有?2能使不等式成立,∴M?N???2?.故选C。2、【答案】A【解析】∵z?3、【答案】D???1?i??1?i???2i??1i1?i1?,∴z?i,则z?z??i.故选A。2?2i2?1?i??1?i?422??????a??b?1??,1??a??b??1??,1???,a?1,1,b?1,?1【解析】∵??,????,∴????????由a??b?a??b得a??b?a??b?0,即?1????1?????1????1????0,????????整理得????1.故选D。4、【答案】D【解析】函数y?2x在R上单调递增,而函数f?x??2x?x?a?在区间?0,1?上单调递减,aa2a2则有函数y?x(x?a)?(x?)?在区间?0,1?上单调递减,因此?1,解得a?2,224∴a的取值范围是?2,???.故选D。5、【答案】A4?1a2?123【解析】由e2?3e1得e?3e,∴.故选A。?3?2,而a?1,∴a?4a36、【答案】B2221【解析】方法一、∵x2?y2?4x?1?0,即?x?2??y2?5,2可得圆心C?2,0?,半径r?5,过点P?0,?2?作圆C的切线,切点为A,B,∵PC?22???2??22,则PA?可得sin?APC?522?2PC?r2?3,21036,cos?APC??,4422则sin?APB?sin2?APC?2sin?APCcos?APC?2?10615,??44422?6??10?1cos?APB?cos2?APC?cos2?APC?sin2?APC??????0,????4??4?4????即?APB为钝角,∴sin??sin?π??APB??sin?APB?方法二、圆x2?y2?4x?1?0的圆心C?2,0?,半径r?过点P?0,?2?作圆C的切线,切点为A,B,连接AB,15;45,
可得PC?22???2??22,则PA?PB?2222PC?r2?3,22因为PA?PB?2PA?PBcos?APB?CA?CB?2CA?CBcos?ACB且?ACB?π??APB,则3?3?6cos?APB?5?5?10cos?π??APB?,1?0,41即?APB为钝角,则cos??cos?π??APB???cos?APB?,4即3?cos?APB?5?5cos?APB,解得cos?APB??且?为锐角,∴sin??1?cos2??15;4方法三、圆x2?y2?4x?1?0的圆心C?2,0?,半径r?5,若切线斜率不存在,则切线方程为y?0,圆心到切点的距离d?2?r,不合题意;若切线斜率存在,设切线方程为y?kx?2,即kx?y?2?0,则2k?2k?12?5,整理得k2?8k?1?0,且??64?4?60?0设两切线斜率分别为k1,k2,则k1?k2??8,k1k2?1,可得k1?k2?∴tan???k1?k2?2?4k1k2?215,sin??15,cos?k1?k21?k1k2?15,即2sin??π?sin?222可得cos??,则sin??cos??sin???1,且???0,?,15?2?15则sin??0,解得sin??7、【答案】C15.故选B.4【解析】方法一、甲:?an?为等差数列,设其首项为a1,公差为d,则Sn?na1?因此{Sn(n?1)Snn?1ddSdd,?a1?d?n?a1?,n?1?n?,2n222n?1n2Sn}为等差数列,则甲是乙的充分条件;nSn?1SnnSn?1?(n?1)Snnan?1?SnS???反之,乙:{n}为等差数列,即为常数,设为t,n?1nn(n?1)n(n?1)n即nan?1?Sn?t,则Sn?nan?1?t?n(n?1),有Sn?1?(n?1)an?t?n(n?1),n?2,n(n?1)两式相减得:an?nan?1?(n?1)an?2tn,即an?1?an?2t,对n?1也成立,因此?an?为等差数列,则甲是乙的必要条件,∴甲是乙的充要条件,C正确.方法2,甲:?an?为等差数列,设数列?an?的首项a1,公差为d,即Sn?na1?则n(n?1)d,2SSn(n?1)dd?a1?d?n?a1?,因此{n}为等差数列,即甲是乙的充分条件;n222nSSSS反之,乙:{n}为等差数列,即n?1?n?D,n?S1?(n?1)D,nn?1nn
即Sn?nS1?n(n?1)D,Sn?1?(n?1)S1?(n?1)(n?2)D,当n?2时,上两式相减得:Sn?Sn?1?S1?2(n?1)D,当n?1时,上式成立,于是an?a1?2(n?1)D,又an?1?an?a1?2nD?[a1?2(n?1)D]?2D为常数,因此?an?为等差数列,则甲是乙的必要条件,∴甲是乙的充要条件。故选C。8、【答案】B11,而cos?sin??,6321∴sin?cos??,则sin(???)?sin?cos??cos?sin??,232212∴cos(2??2?)?cos2(???)?1?2sin(???)?1?2?()?。故选B。39二、多选题【解析】∵sin(???)?sin?cos??cos?sin??9、【答案】BD【解析】对于选项A:设x2,x3,x4,x5的平均数为m,x1,x2,???,x6的平均数为n,x1?x2?x3?x4?x5?x6x2?x3?x4?x52?x1?x6???x5?x2?x3?x4?,??6412∵没有确定2?x1?x6?,x5?x2?x3?x4的大小关系,∴无法判断m,n的大小,则n?m?如:1,2,3,4,5,6,可得m?n?3.5;例如1,1,1,1,1,7,可得m?1,n?2;如1,2,2,2,2,2,可得m?2,n?11;故A错误;6对于选项B,不妨设x1?x2?x3?x4?x5?x6,可知x2,x3,x4,x5与x1,x2,???,x6的中位数均为x3?x4,故B正确;2对于选项C:∵x1是最小值,x6是最大值,则x2,x3,x4,x5的波动幅度不大于x1,x2,???,x6的波动幅度,即x2,x3,x4,x5的标准差不大于x1,x2,???,x6的标准差,例如2,4,6,8,10,12,则平均数n?标准差s1?1?2?4?6?8?10?12??7,61?222222??105,2?7???4?7???6?7???8?7???10?7??12?7????6?34,6,8,10,则平均数m??4?6?8?10??7,标准差s2?1?22221054?7???6?7???8?7???10?7???5,∵?5即s1?s2;故C错误;???4314对于选项D:不妨设x1?x2?x3?x4?x5?x6,则x6?x1?x5?x2,当且仅当x1?x2,x5?x6时,等号成立,故D正确;综上选BD。10、【答案】ACD【解析】由题意可知:Lp1??60,90?,Lp2??50,60?,Lp3?40,对于选项A:可得Lp1?Lp2?20?lgp1pp?20?lg2?20?lg1,p0p0p2
∵Lp1?Lp2,则Lp1?Lp2?20?lgpp1?0,即lg1?0,p2p2p1?1且p1,p2?0,可得p1?p2,故A正确;∴p2对于选项B:可得Lp2?Lp3?20?lgpp2p?20?lg3?20?lg2,p0p0p3p2p1?10,即lg2?,p32p3∵Lp2?Lp3?Lp2?40?10,则20?lg∴p2?e且p2,p3?0,可得p2?ep3,当且仅当Lp2?50时,等号成立,故B错误;p3p3pp?40,即lg3?2,∴3?100,即p3?100p0,故C正确;p0p0p0p1p120?lg?40,L?L?90?50?40,且p1,则p2p2p2对于选项C:∵Lp3?20?lgLp1?Lp2?20?lg对于选项D:由选项A可知:即lgp1p?2,可得1?100,且p1,p2?0,∴p1?100p2,故D正确;综上,选ACD。p2p211、【答案】ABC【解析】(方法一)∵f(xy)?y2f(x)?x2f(y),对于A,令x?y?0,f(0)?0f(0)?0f(0)?0,故A正确.对于B,令x?y?1,f(1)?1f(1)?1f(1),则f(1)?0,故B正确.对于C,令x?y??1,f(1)?f(?1)?f(?1)?2f(?1),则f(?1)?0,令y??1,f(?x)?f(x)?x2f(?1)?f(x),又f(x)定义域为R,∴f(x)为偶函数,故C正确.对于D,不妨令f(x)?0,显然符合题设条件,此时f(x)无极值,故D错误.(方法二)因为f(xy)?y2f(x)?x2f(y),对于A,令x?y?0,f(0)?0f(0)?0f(0)?0,故A正确.对于B,令x?y?1,f(1)?1f(1)?1f(1),则f(1)?0,故B正确.对于C,令x?y??1,f(1)?f(?1)?f(?1)?2f(?1),则f(?1)?0,令y??1,f(?x)?f(x)?x2f(?1)?f(x),又f(x)的定义域为R,∴f(x)为偶函数,故C正确,对于D,当x2y2?0时,在f(xy)?y2f(x)?x2f(y)两边同时除以x2y2,?x2lnx,x?0f(xy)f(x)f(y)f(x)得22?2?2,故可以设2?lnx(x?0),则f(x)??,xyxy0,x?0x?2当x?0时,f(x)?x2lnx,f??x??2xlnx?x?1?x(2lnx?1),x1令f??x??0,得0?x?e?12;令f\'(x)?0,得x?e?2;??1???1?2故f(x)在?0,e?上单调递减,在?e2,???上单调递增,????∵f(x)为偶函数,1????1??2∴f(x)在??e,0?上单调递增,在???,e2?上单调递减,????显然,此时x?0是f(x)的极大值,故D错误。综上,选ABC。
12、【答案】ABD【解析】对于选项A:∵0.99m?1m,即球体的直径小于正方体的棱长,∴能够被整体放入正方体内,故A正确;对于选项B:∵正方体的面对角线长为2m,且2?1.4,∴能够被整体放入正方体内,故B正确;对于选项C:∵正方体的体对角线长为3m,且3?1.8,∴不能够被整体放入正方体内,故C正确;对于选项D:∵正方体的体对角线长为3m,且3?1.2,设正方体ABCD?A1B1C1D1的中心为O,以AC1为轴对称放置圆柱,设圆柱的底面圆心O1到正方体的表面的最近的距离为hm,如图,结合对称性可知OC1?133C1A?,C1O1?OC1?OO1??0.6,2223C1O1h10.6?0.6?h???0.34?0.01,则,即h,解得?2AA1C1A2313∴能够被整体放入正方体内,故D正确;综上,选ABD。三、填空题13、【答案】6411【解析】(1)当从8门课中选修2门,则不同的选课方案共有C4C4?16种;12(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有C4C4?24种;21②若体育类选修课2门,则不同的选课方案共有C4C4?24种;综上所述:不同的选课方案共有16?24?24?64种。故答案为64。14、【答案】76。6【解析】如图,过A1作A1M?AC,垂足为M,易知A1M为四棱台ABCD?A1B1C1D1的高,∵AB?2,A1B1?1,AA1?2,则A1O1?11211A1C1??2A1B1?,AO?AC??2AB?2,222221612?AC?A1C1??,则A1M?A1A2?AM2?2?2?2,22故AM?167676∴所求体积V??(4?1?4?1)?。故答案为。?632615、【答案】[2,3)。【解析】∵0≤x≤2π,∴0≤?x≤2?π,令f(x)?cos?x?1?0,则cos?x?1有3个根,令t??x,则cost?1有3个根,其中t?[0,2?π],结合余弦函数y?cost的图像性质可得4π?2?π?6π,故2???3,综上,答案为[2,3)。
16、【答案】35。5【解析】方法一、依题意,设AF2?2m,则BF2?3m?BF1,AF1?2a?2m,在Rt?ABF1中,9m2?(2a?2m)2?25m2,则(a?3m)(a?m)?0,故a?m或a??3m(舍去),∴AF1?4a,AF2?2a,BF2?BF1?3a,则AB?5a,故cos?F1AF2?AF1AB?4a4?,5a516a2?4a2?4c24c35∴在△AF1F2中,cos?F1AF2?.?,整理得5c2?9a2,故e??2?4a?2a5a5方法二、依题意,得F1(?c,0),F2(c,0),令A?x0,y0?,B(0,t),??????522????2∵F2A??F2B,∴?x0?c,y0?????c,t?,则x0?c,y0??t,3333?????????8????????2?8222又F1A?F1B,∴F1A?F1B??c,?t??c,t??c?t?0,则t2?4c2,3?33?325242ct25c24t225c216c2又点A在C上,则9,整理得?2?1,则?2?1,22?92?19a9b9a9b2ab∴25c2b2?16c2a2?9a2b2,即25c222整理得25c4?50c2?9a4?0,则5c?9a??c2?a2?16a2c2?9a2c2?a2,2???5c?a2?0,解得5c2?9a2或5c2?a2,???又e?1,∴e?四、解答题3553535或e?(舍去),故e?。故答案为。5555310;(2)6。1017、【答案】(1)π,又2sin(A?C)?sinB?sin(A?C),4?2sinAcosC?2cosAsinC?sinAcosC?cosAsinC,?sinAcosC?3cosAsinC,【解析】(1)?A?B?3C,?π?C?3C,即C??sinA?3cosA,即tanA?3,∴0?A?(2)由(1)知,cosA?π3310?,?sinA?.21010110?10,1023101025,(?)?210105由sinB?sin(A?C)?sinAcosC?cosAsinC?由正弦定理,cb?,可得b?sinCsinB5?11?AB?h?AB?AC?sinA,?h?b?sinA?210?310?6.2210255?210,22
18、【答案】(1)详细证明过程见解析;(2)1。【解析】(1)以C为坐标原点,CD,CB,CC1所在直线为x,y,z轴建立空间直角坐标系,如图,则C(0,0,0),C2(0,0,3),B2(0,2,2),D2(2,0,2),A2(2,2,1),?????????????????????????B2C2?(0,?2,1),A2D2?(0,?2,1),?B2C2∥A2D2,又B2C2,A2D2不在同一条直线上,?B2C2∥A2D2。(2)设P(0,2,?)(0???4),?????????????????则A2C2?(?2,?2,2),PC2?(0,?2,3??),D2C2=(?2,0,1),?设平面PA2C2的法向量n?(x,y,z),?????????n?AC?22??2x?2y?2z?0y?3??,x???1?则??????,令z?2,得,?n?(??1,3??,2),n?PC??2y?(3??)z?0?2?设平面A2C2D2的法向量m?(a,b,c),??????????m?AC?22??2a?2b?2c?0??????b?1,c?2则??,令a?1,得,?m?(1,1,2),m?DC??2a?c?0?22????n?m???63?cosn,m??????cos150??,2nm64?(??1)2?(3??)2化简可得,?2?4??3?0,解得??1或??3,???P(0,2,1)或P(0,2,3),?B2P?1.19、【答案】(1)答案见解析;(2)证明见解析。xx【解析】(1)∵f(x)?ae?a?x,定义域为R,∴f??x??ae?1,??x当a?0时,由于ex?0,则aex?0,故f??x??ae?1?0恒成立,∴f?x?在R上单调递减;x当a?0时,令f??x??ae?1?0,解得x??lna,当x??lna时,f??x??0,则f?x?在???,?lna?上单调递减;当x??lna时,f\'(x)?0,则f?x?在??lna,???上单调递增;综上:当a?0时,f?x?在R上单调递减;当a?0时,f?x?在???,?lna?上单调递减,f?x?在??lna,???上单调递增.?lna?a?lna?1?a2?lna,(2)方法一、由(1)得,f?x?min?f??lna??ae??要证f(x)?2lna?231322,即证1?a?lna?2lna?,即证a??lna?0恒成立,222112a2?1令g?a??a??lna?a?0?,则g??a??2a??,2aa令g??a??0,则0?a?22;令g??a??0,则a?;22?2??2?0,,??∴g?a?在?上单调递减,在????2??2?上单调递增,????
∴g?a?min?2??2?12?g????ln?ln2?0,则g?a??0恒成立,????2??2?22????23恒成立,证毕.2xx方法二、令h?x??e?x?1,则h??x??e?1,∴当a?0时,f(x)?2lna?x由于y?ex在R上单调递增,∴h??x??e?1在R上单调递增,0又h??0??e?1?0,∴当x?0时,h??x??0;当x?0时,h??x??0;∴h?x?在???,0?上单调递减,在?0,???上单调递增,故h?x??h?0??0,则ex?x?1,当且仅当x?0时,等号成立,∵f(x)?ae?a?x?ae?a?x?e?x?x2x?lna?a2?x?x?lna?1?a2?x,当且仅当x?lna?0,即x??lna时,等号成立,∴要证f(x)?2lna?233122,即证x?lna?1?a?x?2lna?,即证a??lna?0,222112a2?1令g?a??a??lna?a?0?,则g??a??2a??,2aa令g??a??0,则0?a?∴g?a?在??0,??22;令g??a??0,则a?;22?2?2?,????上单调递减,在??2?上单调递增,2????2∴g?a?min?2??2?12?g????ln?ln2?0,则g?a??0恒成立,????2??2?22????3恒成立,证毕.25120、【答案】(1)an?3n;(2)d?。50∴当a?0时,f(x)?2lna?【解析】(1)?3a2?3a1?a3,?3d?a1?2d,解得a1?d,?S3?3a2?3(a1?d)?6d,又T3?b1?b2?b3?即2d2?7d?3?0,解得d?3或d?926129???,?S3?T3?6d??21,d2d3ddd1(舍去),?an?a1?(n?1)?d?3n.212212(2)?{bn}为等差数列,?2b2?b1?b3,即??,a2a1a3?6(116d1?)??,即a12?3a1d?2d2?0,解得a1?d或a1?2d,a2a3a2a3a1?d?1,?an?0,又S99?T99?99,由等差数列性质得99a50?99b50?99,即a50?b50?1,?a50?25502?1,即a50?a50?2550?0,解得a50?51或a50??50(舍去)a50当a1?2d时,a50?a1?49d?51d?51,解得d?1,与d?1矛盾,无解;
当a1?d时,a50?a1?49d?50d?51,解得d?5151.综上,d?。50501?2?21、【答案】(1)0.6;(2)???6?5?i?1n5??2??n1?;(3)E(Y)??1?????。18?3??5???3【解析】(1)记“第i次投篮的人是甲”为事件Ai,“第i次投篮的人是乙”为事件Bi,∴P?B2??P?A1B2??P?B1B2??P?A1?P?B2|A1??P?B1?P?B2|B1??0.5??1?0.6??0.5?0.8?0.6.(2)设P?Ai??pi,依题可知,P?Bi??1?pi,则P?Ai?1??P?AiAi?1??P?BiAi?1??P?Ai?P?Ai?1|Ai??P?Bi?P?Ai?1|Bi?,即pi?1?0.6pi??1?0.8???1?pi??0.4pi?0.2,构造等比数列?pi???,12?1?12?pi???,解得???3,则pi?1?3?5?pi?3?,5??1?11121?又p1?,p1??,∴?pi??是首项为,公比为的等比数列,3??23656设pi?1???11?2?1?2?∴pi?????,pi????36?5?6?5?i?1i?11?.31?2?(3)∵pi????6?5?i?11?,i?1,2,???,n,∴当n?N*时,3nn?2??n,??????5???3?2?1???15?n5??E?Y??p1?p2???pn?????126318??1?55??2?E(Y)?(4)∴?1???18???5?222、【答案】(1)y?x?n?n??.??31;(2)见解析。42211122??【解析】(1)设P(x,y),则y?x??y??,化简得y?x?,故W:y?x?.442??1??21??21??2(2)方法一、设矩形的三个顶点A?a,a??,B?b,b??,C?c,c??在W上,且a?b?c,4??4??4??易知矩形四条边所在直线的斜率均存在,且不为0,则kAB?kBC??1,a?b?b?c,令b2?kAB?1?21???a??,4?4??a?b?m?0b?a1,n同理令kBC?b?c?n?0,且mn??1,则m??1设矩形周长为C,由对称性不妨设|m|?|n|,kBC?kAB?c?a?n?m?n?,则n11??C?|AB|?|BC|?(b?a)1?m2?(c?b)1?n2?(c?a)1?n2??n??1?n2,其中n?0。2n??
221??1?1??1?2??2?易知?n??1?n?0,则令f(x)??x??1?x,x?0,f(x)?2?x???2x??,n??x?x??x?????2令f?(x)?0,解得x?,2?2?f(x)单调递减,?0,当x???2??时,f(x)?0,此时???2?f(x)单调递增,?,??当x????2?,f(x)?0,此时???2?2712733?则f(x)min?f?,故,即C?33.C????2?4242??当C?33时,n?2,m??2,且(b?a)1?m2?(b?a)1?n2,2即m?n时等号成立,矛盾,故C?33,得证。1??2方法二、不妨设A,B,D在W上,且BA?DA,依题意可设A?a,a??,4??易知直线BA、DA的斜率均存在且不为0,则设BA,DA的斜率分别为k和?由对称性,不妨设k?1,2直线AB的方程为y?k(x?a)?a?1,k1,41?2y?x???4则联立?得x2?kx?ka?a2?0,?y?k(x?a)?a2?1?4???k2?4?ka?a2???k?2a??0,则k?2a,则|AB|?1?k2|k?2a|,2同理|AD|?1?11?2a,k2k11?2ak2k?|AB|?|AD|?1?k2|k?2a|?1???11?1?k2?k?2a??2a??1?k2k??kk??2?1?k?k223(m?1)31令k?m,则m??0,1?,设f(m)??m2?3m??3,mm11(2m?1)(m?1)2?f(m)?0m?则f(m)?2m?3?2?,令,解得,22mm?1?当m??0,?时,f?(m)?0,此时f(m)单调递减,?2???1?当m??,???,f?(m)?0,此时f(m)单调递增,?2?
?1?2733则f(m)min?f???,?|AB|?|AD|?,?2?422但1?k|k?2a|?1?11?2a?1?k22kk?1|k?2a|??2a?k???,?此处取等条件为k?1,与最终取等时k?332不一致,故AB?AD?.22方法三、为了计算方便,我们将抛物线向下移动1个单位得抛物线W?:y?x2,4矩形ABCD变换为矩形A?B?C?D?,则问题等价于矩形A?B?C?D?的周长大于33.设Bt0,t0,At1,t1,Ct2,t2,根据对称性不妨设t0?0.????2??2??22?则kA?B??t1?t0,kB?C??t2?t0,由于A?B??B?C?,则由于A?B??1??t1?t0?t1?t0,B?C??1??t2?t0?t1?t0??t2?t0???1.?2t2?t0,且t0介于t1,t2之间,22则A?B??B?C??1??t1?t0?t1?t0?1??t2?t0?t2?t0.令t2?t0?tan?,?π?t1?t0??cot?,???0,?,则t2?tan??t0,t1??cot??t0,从而?2?A?B??B?C??1?cot2??2t0?cot???1?tan2??tan??2t0?1?1?故AB?BC?2t0??sin?cos?????cos?2t0(cos??sin?)sin3??cos3??sin??2??。??2sin?cos?sin2?cos2??cos?sin??π?sin3??cos3?sin?cos?12??????0,①当?时,AB?BC???2?2?2?22?222?4?sin?cos?cos?sin?sin?cos?sin2?②当???,?时,由于t1?t0?t2,从而?cot??t0?t0?tan??t0,?42?从而????ππ?cot?tan?tan??t0?又t0?0,故0?t0?,222??2t0(cos??sin?)sin3??cos3??∴AB?BC?sin?cos?sin2?cos2?sin?(cos??sin?)(sin?cos?)sin3??cos3?1cos?????sin2?cos3?sin2?cos2?cos?sin2??sin?sin??2cos?2222?2?1?cos2???1?cos2???2cos2?3?2??1?cos2????1?cos2???2cos2??????3???2?2????3?3?332,当且仅当cos??333时等号成立,故A?B??B?C??,故矩形周长大于32。23
更多推荐
答案,投篮,解析
发布评论