2023年12月14日发(作者:路虎车牌子标志)
六年级数学下册第五章基本平面图形专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
2、已知?A?50,则∠A的补角等于( )
A.40 B.50 C.130 D.140
3、如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )
A.北偏西55° B.北偏东65° C.北偏东35° D.北偏西35°
4、上午10:00,钟面上时针与分针所成角的度数是( )
A.30° B.45° C.60° D.75°
5、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )
A.一对 B.二对 C.三对
12D.四对
6、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )
A.?AOC??BOC
C.?AOC??BOC或?AOC?2?BOC
B.?AOC??AOB
D.?AOC??BOC或?AOC?3?BOC
7、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )
A.两点确定一条直线
C.线段有两个端点
B.两点之间线段最短
D.射线只有一个端点
8、如图,点D是线段AB的中点,点E是AC的中点,若AB?6cm,AC?14cm,则线段DE的长度是( )
A.3cm B.4cm C.5cm D.6cm
9、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
10、下列说法中正确的是( )
A.两点之间直线最短
C.倒数等于本身的数为±1
33B.单项式πx2y的系数是
22D.射线是直线的一半
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,B是线段AD上一点,C是线段BD的中点,AD=10,BC=3.则线段AB的长等于________.
2、直线上有A、B、C三点,AB=4,BC=6,则AC=___.
3、如图,从O点引出6条射线OA、OB、OC、OD、OE、OF,且?AOB?85?,?EOF?155?,OE、OF分别是?AOD、?BOC的平分线.则?COD的度数为___________度.
4、已知∠1与∠2互余,∠2与∠3互补,若∠1=33°27\',则∠2=_____,∠3=_____.
5、如图,点C在线段AB上,点D是线段AB的中点,AB=10cm,AC=7cm,则CD=______cm.
三、解答题(5小题,每小题10分,共计50分)
1、数轴上不重合两点A,B.
(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为 ;
(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为 ;
(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD上一点.设移动的时间为t(t>0)秒,
①用含t的式子填空:点A表示的数为 ;点C表示的数为 ;
②当点O是线段AB的中点时,直接写出t的取值范围.
2、如图,两条直线AB,CD相交于点O,且∠AOC=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s.两条射线OM,ON同时运动,运动时间为t秒.(本题出现的角均小于平角)
(1)当t=2时,∠MON=_______,∠AON=_______;
(2)当0<t<12时,若∠AOM=3∠AON=60°.试求出t的值;
(3)当0<t<6时,探究件不是定值?
?BON??COM??AOC的值,问:t满足怎样的条件是定值;满足怎样的条?MON3、如图,线段AB的长为12,C是线段AB上的一点,AC=4,M是AB的中点,N是AC的中点,求线段MN的长.
4、如图,已知线段a,b.(尺规作图,保留作图痕迹,不写作法)
求作:线段AB?2a?b.
5、如图,点C为线段AD上一点,点B为CD的中点,且AC=6cm,BD=2cm.
(1)求线段AD的长;
(2)若点E在直线AD上,且EA=3cm,求线段BE的长.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意; D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
2、C
【解析】
【分析】
若两个角的和为180?, 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解:
?A?50,
? ∠A的补角为:18050130,
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
3、D
【解析】
【分析】
如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,
即可得到答案.
【详解】
解:假设两船相撞,如同所示, 根据两船的速度相同可得AC=BC,
∴∠CBA=∠CAB=90°-35°=55°,
∴乙的航向不能是北偏西35°,
故选:D.
【点睛】
此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.
4、C
【解析】
【分析】
钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,
【详解】
10时整,时针与分针组成的角的度数是30°×2=60°.
故选:C.
【点睛】
本题要在了解钟面结构的基础上进行解答.
5、C
【解析】 【分析】
根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.
【详解】
解:∵∠BOC=90°,∠COD=45°,
∴∠AOC=90°,∠BOD=45°,∠AOD=135°,
∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,
∴图中互为补角的角共有3对,
故选:C.
【点睛】
本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.
6、D
【解析】
【分析】
分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.
【详解】
解:当OC在∠AOB内部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=∠BOC;
12当OC在∠AOB外部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=3∠BOC;
综上,∠AOC=∠BOC或∠AOC=3∠BOC;
故选:D.
【点睛】
本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.
7、A
【解析】
【分析】
根据经过两点有一条直线,并且只有一条直线即可得出结论.
【详解】
解:∵让男生站成一条直线,他先让前两个男生站好不动,
∴经过两点有一条直线,并且只有一条直线,
∴这种做法的数学依据是两点确定一条直线.
故选A.
【点睛】
12本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.
8、B
【解析】
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
9、A
【解析】
【分析】
根据直线、线段、射线的区别逐项分析判断即可
【详解】
解:①图中只有直线BD,1条直线,原说法错误;
②图中共有2×3+1×2=8条射线,原说法错误;
③图中共有6条线段,即线段AB,AC,AD,BC,BD,CD,原说法是正确的; ④图中射线BC与射线CD不是同一条射线,原说法错误.
故正确的有③,共计1个
故选:A.
【点睛】
本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.
10、C
【解析】
【分析】
33分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是?;倒数等于本身22的数为±1;射线是是直线的一部分.
【详解】
解:A.两点之间线段最短,故不符合题意;
B.单项式πx2y的系数是?,不符合题意;
C.倒数等于本身的数为±1,故符合题意;
D.射线是是直线的一部分,故不符合题意;
故选:C.
【点睛】
本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.
二、填空题
1、4
【解析】
3232【分析】
首先根据C是线段BD的中点,可得:CD=BC=3,然后用AD的长度减去BC、CD的长度,求出AB的长度是多少即可.
【详解】
解:∵C是线段BD的中点,BC=3,
∴CD=BC=3;
∵AB+BC+CD=AD,AD=10,
∴AB=10-3-3=4.
故答案为:4.
【点睛】
本题主要考查了两点间的距离.解题的关键是熟练掌握两点间的距离的求法,以及线段的中点的定义.
2、10或2##2或10
【解析】
【分析】
根据题目可分两种情况,C点在B点右测时,C在B左侧时,根据两种情况画图解析即可.
【详解】
解:①
如图一所示,当C点在B点右测时:AC=AB+BC=4+6=10;
②
如图二所示:当C在B左侧时:AC=BC-AB=6-4=2, 综上所述AC等于10或2,
故答案为:10或2.
【点睛】
本题考查,线段的长度,点与点之间的距离,以及分类讨论思想,在解题中能够将分类讨论思想与几何图形相结合是本题的关键.
3、35
【解析】
【分析】
根据OE、OF分别是?AOD、?BOC的平分线.得出∠AOE=∠DOE,∠BOF=∠COF,可得∠AOE+∠BOF=∠DOE+∠COF=∠EOF-∠COD=155°-∠COD,根据周角∠AOB+∠AOE+∠BOF+∠EOF=360°,得出85°+155°-∠COD+155°=360°,解方程即可.
【详解】
解:∵OE、OF分别是?AOD、?BOC的平分线.
∴∠AOE=∠DOE,∠BOF=∠COF,
∴∠AOE+∠BOF=∠DOE+∠COF=∠EOF-∠COD=155°-∠COD,
∵∠AOB+∠AOE+∠BOF+∠EOF=360°,
∴85°+155°-∠COD+155°=360°,
解得∠COD=35°.
故答案为35.
【点睛】
本题考查角平分线有关的计算,角的和差,周角性质,一元一次方程,掌握角平分线有关的计算,角的和差,周角性质,一元一次方程是解题关键.
4、
56?33?
123?27?
【解析】 【分析】
根据余角和补角的概念求出∠3,∠2与∠1的关系,把∠1的值代入计算即可.
【详解】
解:∵∠1与∠2互余,
∴∠2=90°﹣∠1,
∵∠1=33°27\',
∠2=90°﹣33?27??89?60??33?27??56?33?
∵∠2与∠3互补,
∴∠3=180°﹣∠2=180°﹣(90°﹣∠1)=90°+∠1,
∵∠1=33?27?,
∴∠3=123?27?,
故答案为:56?33?,123?27?.
【点睛】
本题考查了角的计算问题,掌握互余与互补的定义是解题的关键.
5、2
【解析】
【分析】
根据点D是线段AB的中点,可得AD?【详解】
解:∵点D是线段AB的中点,AB=10cm,
∴AD?1AB?5cm ,
21AB?5cm ,即可求解.
2∵AC=7cm,
∴CD?AC?AD?7?5?2cm .
故答案为:2
【点睛】
本题主要考查了中点的定义,线段的和与差,熟练掌握把一条线段分成相等的两段的点,叫做线段的中点是解题的关键.
三、解答题
1、 (1)?1
(2)5
(3)①t?5,3t?3;②2?t?6且t?5
【解析】
【分析】
(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;
(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;
(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为t?5,用点C运动的速度×运动时间+起点表示数得出点C表示的数为3t?3;
②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.
(1)
解:∵点A表示的数为﹣3,点B表示的数为1,
∴AB=1-(-3)=1+3=4, ∵点M为AB中点,
∴AM=BMAB??4?2,
∴点M表示的数为:-3+2=-1,
故答案为:-1;
(2)
解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,
∴AN=1-(-3)=1+3=4,
∵点N为AB中点,
∴AB=2AN=2×4=8,
∴点B表示的数为:-3+8=5,
故答案为:5;
(3)
①点A表示的数为t?5,
点C表示的数为3t?3,
故答案为:t?5;3t?3;
②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,
∴-3+3t+t=5-(-3),
∴t=2,
当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,
∴t≠5,
当点B与点D重合时,点A运动到1,-5+t=1,
1212∴t=6,
∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.
【点睛】
本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.
2、 (1)144°,66°
(2)10秒或10秒
710?BON??COM??AOC10?BON??COM??AOC时,的值是1;当<t<6时,的3?MON3?MON(3)当0<t<值不是定值
【解析】
【分析】
(1)根据时间和速度分别计算∠BOM和∠DON的度数,再根据角的和与差可得结论;
(2)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t<12时,分别根据已知条件列等式可得t的值;
(3)分两种情况,分别计算∠BON、∠COM和∠MON的度数,代入可得结论.
(1)
由题意得:
当t=2时,
∠MON=∠BOM+∠BOD+∠DON=2×15°+90°+2×12°=144°,
∠AON=∠AOD-∠DON=90°-24°=66°, 故答案为:144°,66°;
(2)
当ON与OA重合时,t=90÷12=7.5(s)
当OM与OA重合时,t=180°÷15=12(s)
如图所示,①当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°
由∠AOM=3∠AON-60°,可得180-15t=3(90-12t)-60,解得t=10,
7②当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,
由∠AOM=3∠AON-60°,可得180-15t=3(12t-90)-60,解得t=10,
综上,t的值为(3)
当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,
∴15t+90+12t=180,解得t=10,
310秒或10秒;
7如图所示,①当0<t<10时,∠COM=90°-15t°,∠BON=90°+12t°,
3
∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,
?BON??COM??AOC90??12t??(90??15t?)?90???1(定值)∴,
?MON15t??90??12t?②当10<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,
3
∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,
?BON??COM??AOC
?MON90??12t??(90??15t?)?90??
270??27t?90??27t??,
270??27t?∴(不是定值).
综上所述,当0<t<10?BON??COM??AOC10时,的值是1;当<t<6时,3?MON3?BON??COM??AOC的值不是定值.
?MON【点睛】
本题主要考查了一元一次方程的应用,角的和差关系的计算,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.
3、MN?4
【解析】
【分析】
根据MN?AM?AN?【详解】
解:由题意知:AM?∴MN?AM?AN?4
∴线段MN的长为4.
【点睛】
本题考查了线段的中点有关的计算.解题的关键在于正确的表示线段之间的数量关系.
4、见解析
【解析】
【分析】
作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.
【详解】
解:如图,线段AB即为所求作的线段2a?b.
11AB?6,AN?AC?2
2211AB?AC求解即可.
22 【点睛】
本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.
5、 (1)10cm
(2)BE=5cm或11cm
【解析】
【分析】
(1)根据线段中点的定义和线段的和差即可得到结论;
(2)分当点E在点A的左侧时和当点E在点A的右侧时两种情况,根据线段中点的定义和线段的和差即可得到结论.
(1)
解:因为点B为CD的中点,BD=2cm,
所以CD=2BD=4cm,
又因为AC=6cm,
所以AD=AC+CD=10cm;
(2)
解:当点E在点A的左侧时,如图所示:
则BE=EA+CA+BC, 因为点B为CD的中点,
所以BC=BD=2cm,
因为EA=3cm,CA=6cm,
所以BE=2+3+6=11(cm).
当点E在点A的右侧时,如图所示:
∵AC=6cm,EA=3cm,
∴BE=AB﹣AE=AC+BC﹣AE=6+2﹣3=5(cm).
综上,BE=5cm或11cm.
【点睛】
本题考查了两点间的距离,线段中点的定义,分类讨论是解题的关键.
更多推荐
线段,表示,解题,中点
发布评论