2023年12月20日发(作者:皇冠suv汽车图片及价格)

2023年普通高等学校招生全国统一考试(新高考全国Ⅰ卷)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M???2,?1,0,1,2?,N??xx2?x?6?0?,则M?N?()A.??2,?1,0,1?B.?0,1,2?C.??2?D.22.已知z?1?i2?2i,则z?z?()A.?.0D.13.已知向量a???1,1?,?b??1,?1?,若?a????b???a????b?,则()A.????1B.?????1C.???1D.????14.设函数f?x??2x?x?a?在区间?0,1?上单调递减,则a的取值范围是()A.???,?2?B.??2,0?C.?0,2?D.?2,???5.设椭圆Cx21:2x2a2?y?1(a?1),C2:4?y2?1的离心率分别为e1,e2.若e2?3e1,则a?(A.233B.2C.3D.66.过点?0,?2?与圆x2?y2?4x?1?0相切的两条直线的夹角为?,则sin??()A.1B.1564C.104D.47.记Sn为数列?an?的前n项和,设甲:?an?为等差数列;乙:{Snn}为等差数列,则(A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件))

C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件8.已知sin??????,cos?sin??,则cos?2??2???(7A.91B.91316).D.?79C.?19二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据x1,x2,???,x6,其中x1是最小值,x6是最大值,则(A.x2,x3,x4,x5的平均数等于x1,x2,???,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,???,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,???,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,???,x6的极差10.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级Lp?20?lg其中常数p0?p0?0?是听觉下限阈值,p是实际声压.下表为不同声源的声压级:声源燃油汽车混合动力汽车电动汽车与声源的距离/m101010声压级/dB60?90)p,p050?6040已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为p1,p2,p3,则().B.p2?10p3D.p1?100p2).A.p1?p2C.p3?100p02211.已知函数f?x?的定义域为R,f?xy??yf?x??xf?y?,则(

A.f?0??0C.f?x?是偶函数B.f?1??0D.x?0为f?x?的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14.在正四棱台ABCD?A1B1C1D1中,AB?2,A1B1?1,AA1?2,则该棱台的体积为________.15.已知函数f?x??cos?x?1(??0)在区间?0,2π?有且仅有3个零点,则?的取值范围是________.16.x2y2已知双曲线C:a2?b2?1(a?0,b?0)的左、右焦点分别为F1,F2.点A在C上,点B在y轴上,??????????????2????F1A?F1B,F2A??F2B,则C的离心率为________.3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在?ABC中,A?B?3C,2sin?A?C??sinB.(1)求sinA;(2)设AB?5,求AB边上的高.18.如图,在正四棱柱ABCD?A1B1C1D1中,AB?2,AA1?4.点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2?1,BB2?DD2?2,CC2?3.

(1)证明:B2C2∥A2D2;(2)点P在棱BB1上,当二面角P?A2C2?D2为150?时,求B2P.x19.已知函数f?x??a?e?a??x.(1)讨论f?x?的单调性;(2)证明:当a?0时,f?x??2lna?.n2?n20.设等差数列?an?的公差为d,且d?1.令bn?,记Sn,Tn分别为数列?an?,?bn?的前nan32项和.(1)若3a2?3a1?a3,S3?T3?21,求?an?的通项公式;(2)若?bn?为等差数列,且S99?T99?99,求d.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量Xi服从两点分布,且P?Xi?1??1?P?Xi?0??qi,i?1,2,???,n,则?n?nE??Xi???qi.记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E?Y?.?i?1?i?1

?1?xxOyPP22.在直角坐标系中,点到轴的距离等于点到点?0,?的距离,记动点P的轨迹?2?为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于33.

1.C.2.A.3.D..13.64.14.766.15.[2,3).16.355.17.?A?B?3C,?π?C?3C,即C?π4,又2sin(A?C)?sinB?sin(A?C),?2sinAcosC?2cosAsinC?sinAcosC?cosAsinC,?sinAcosC?3cosAsinC,?sinA?3cosA,即tanA?3,所以0?A?π2,?sinA?331010?10.由(1)知,cosA?11010?10,由sinB?sin(A?C)?sinAcosC?cosAsinC?22(31010?1010)?255,c5?25由正弦定理,sinC?bsinB,可得b?25?210,2?112AB?h?2AB?AC?sinA,?h?b?sinA?210?31010?6.18.以C为坐标原点,CD,CB,CC1所在直线为x,y,z轴建立空间直角坐标系,如图,

则C(0,0,0),C2(0,0,3),B2(0,2,2),D2(2,0,2),A2(2,2,1),?????????????B2C2?(0,?2,1),A2D2?(0,?2,1),?????????????B2C2∥A2D2,又B2C2,A2D2不在同一条直线上,?B2C2∥A2D2.设P(0,2,?)(0???4),?????????????????则A2C2?(?2,?2,2),PC2?(0,?2,3??),D2C2=(?2,0,1),设平面PA2C2的法向量n?(x,y,z),?????????n?A2C2??2x?2y?2z?0?则??????,n?PC??2y?(3??)z?0?2??令z?2,得y?3??,x???1,??n?(??1,3??,2),??设平面A2C2D2的法向量m?(a,b,c),?????????m?A2C2??2a?2b?2c?0则????????,??m?D2C2??2a?c?0令a?1,得b?1,c?2,???m?(1,1,2),???n?m????cosn,m?????nm664?(??1)2?(3??)2?cos150??3,2化简可得,?2?4??3?0,解得??1或??3,?P(0,2,1)或P(0,2,3),?B2P?19.因为f(x)?a?e?a??x,定义域为R,所以f??x??ae?1,x当a?0时,由于ex?0,则aex?0,故f??x??ae?1?0恒成立,所以f?x?在R上单调递减;x当a?0时,令f??x??ae?1?0,解得x??lna,

当x??lna时,f??x??0,则f?x?在???,?lna?上单调递减;当x??lna时,f?(x)>0,则f?x?在??lna,???上单调递增;综上:当a?0时,f?x?在R上单调递减;当a?0时,f?x?在???,?lna?上单调递减,f?x?在??lna,???上单调递增.方法一:?lna2由(1)得,f?x?min?f??lna??a?e?a??lna?1?a?lna,33122f(x)?2lna?1?a?lna?2lna?a??lna?0恒成立,要证,即证,即证222112a2?1令g?a??a??lna?a?0?,则g??a??2a??,2aa2令g??a??0,则0?a?22;令g??a??0,则a?;22??2?2?0,,??ga?所以??在??2??上单调递减,在??2?上单调递增,????所以g?a?min?2??2?12?g????ln?ln2?0,则g?a??0恒成立,????2??2?22????322所以当a?0时,f(x)?2lna?恒成立,证毕.方法二:xx令h?x??e?x?1,则h??x??e?1,x由于y?ex在R上单调递增,所以h??x??e?1在R上单调递增,0又h??0??e?1?0,所以当x?0时,h??x??0;当x?0时,h??x??0;所以h?x?在???,0?上单调递减,在?0,???上单调递增,故h?x??h?0??0,则ex?x?1,当且仅当x?0时,等号成立,xx2x?lna?a2?x?x?lna?1?a2?x,因为f(x)?a?e?a??x?ae?a?x?e当且仅当x?lna?0,即x??lna时,等号成立,33122f(x)?2lna?x?lna?1?a?x?2lna?a??lna?0,所以要证,即证,即证222

112a2?1令g?a??a??lna?a?0?,则g??a??2a??,2aa2令g??a??0,则0?a?22;令g??a??0,则a?;22??2?2?所以g?a?在??0,2??上单调递减,在??2,????上单调递增,????所以g?a?min?2??2?12?g????ln?ln2?0,则g?a??0恒成立,????2??2?22????322所以当a?0时,f(x)?2lna?恒成立,证毕.20.?3a2?3a1?a3,?3d?a1?2d,解得a1?d,?S3?3a2?3(a1?d)?6d,又T3?b1?b2?b3??S3?T3?6d?226129???,d2d3dd9?21,d1(舍去),2即2d?7d?3?0,解得d?3或d??an?a1?(n?1)?d?3n.?{bn}为等差数列,?2b2?b1?b3,即?6(12212??,a2a1a3116d1?)??,即a12?3a1d?2d2?0,解得a1?d或a1?2d,a2a3a2a3a1?d?1,?an?0,又S99?T99?99,由等差数列性质知,99a50?99b50?99,即a50?b50?1,?a50?25502?1,即a50?a50?2550?0,解得a50?51或a50??50(舍去)a50当a1?2d时,a50?a1?49d?51d?51,解得d?1,与d?1矛盾,无解;当a1?d时,a50?a1?49d?50d?51,解得d?综上,d?51.5051.50

21.记“第i次投篮的人是甲”为事件Ai,“第i次投篮的人是乙”为事件Bi,所以,P?B2??P?A1B2??P?B1B2??P?A1?P?B2|A1??P?B1?P?B2|B1??0.5??1?0.6??0.5?0.8?0.6.设P?Ai??pi,依题可知,P?Bi??1?pi,则P?Ai?1??P?AiAi?1??P?BiAi?1??P?Ai?P?Ai?1|Ai??P?Bi?P?Ai?1|Bi?,即pi?1?0.6pi??1?0.8???1?pi??0.4pi?0.2,构造等比数列?pi???,设pi???2?pi???,解得???112?1??153,则pi?1?3?5??pi?3??,又p1?112,p1?13?16,所以???p?i?123??是首项为6,公比为5的等比数列,i?1i?即pi?13?1?2?1?2?116???5??,pi?6???5???3.i?1因为p?1?2?i6???5???13,i?1,2,???,n,所以当n?N*时,E?Y??p2???pn?11???2?n5?n5??2?n?1?p6?????1?25318??1?????n??5???3,n故E(Y)?5??1???18??2??n??5????.?322.设P(x,y)2,则y?x2????y?1?2??,两边同平方化简得y?x2?14,故W:y?x2?14.法一:设矩形的三个顶点A???a,a2?1?4??,B???b,b2?1??21?4??,C??c,c?4??在W上,且a?b?c,易知矩形四条边所在直线的斜率均存在,且不为0,

则kAB?kBC??1,a?b?b?c,令k?ABb2?1?21???a??,4?4??a?b?m?0b?a1同理令kBC?b?c?n?0,且mn??1,则m??n,设矩形周长为C,由对称性不妨设|m|?|n|,kBC?kAB?c?a?n?m?n?则1,n11??C?|AB|?|BC|?(b?a)1?m2?(c?b)1?n2?(c?a)1?n2??n??1?n2.n?0,易知2n??1??2n???1?n?0n??1?1??1???则令f(x)??x??1?x2,x?0,f?(x)?2?x???2x??,x?x??x???2??2令f?(x)?0,解得x?2,2?2?f(x)单调递减,?x?0,当??2??时,f(x)?0,此时???2?f(x)单调递增,?x?,???当??2?,f(x)?0,此时??则f(x)min故C?12?2?27?f??2???4,??2733?,即C?33.422,m??2,且(b?a)1?m2?(b?a)1?n2,即m?n时等号成立,矛盾,故2当C?33时,n?C?33,得证.法二:不妨设A,B,D在W上,且BA?DA,

1??2Aa,a?依题意可设??,易知直线BA,DA的斜率均存在且不为0,4??1则设BA,DA的斜率分别为k和?,由对称性,不妨设k?1,k直线AB的方程为y?k(x?a)?a2?,1?2y?x???4则联立?得x2?kx?ka?a2?0,?y?k(x?a)?a2?1?4???k2?4?ka?a2???k?2a??0,则k?2a214则|AB|?1?k2|k?2a|,同理|AD|?1?11?2a,2kk11?2a2kk?|AB|?|AD|?1?k2|k?2a|?1??1?1?k2?k?2a??2ak?2?12?1?kk???k??1?k2k2?3(m?1)31?m2?3m??3,令k?m,则m??0,1?,设f(m)?mm11(2m?1)(m?1)2?(m)?0,解得m?,f则f(m)?2m?3?2?,令2mm2?当m??0,?时,f?(m)?0,此时f(m)单调递减,2???当m??,???,f?(m)?0,此时f(m)单调递增,???则f(m)min?f???,?2?4?|AB|?|AD|?33,21271?2??1?

但1?k2|k?2a|?1?时k??1112??2a?1?k|k?2a|??2a??,此处取等条件为k?1,与最终取等2kkk??332不一致,故AB?AD?.2214法三:为了计算方便,我们将抛物线向下移动个单位得抛物线W?:y?x2,矩形ABCD变换为矩形A?B?C?D?,则问题等价于矩形A?B?C?D?的周长大于33.?2?2?2设B?t0,t0?,A?t1,t1?,C?t2,t2?,根据对称性不妨设t0?0.则kAB?t1?t0,kBC?t2?t0,由于A?B??B?C?,则?t1?t0??t2?t0???1.????22由于A?B??1??t1?t0?t1?t0,B?C??1??t2?t0?t2?t0,且t0介于t1,t2之间,22则A?B??B?C??1??t1?t0?t1?t0?1??t2?t0?t2?t0.令t2?t0?tan?,?π?t1?t0??cot?,???0,?,则t2?tan??t0,t1??cot??t0,从而?2?A?B??B?C??1?cot2??2t0?cot???1?tan2??tan??2t0?1?sin?cos?2t0(cos??sin?)sin3??cos3??1??2??故AB?BC?2t0???2sin?cos?sin2?cos2??sin?cos??cos?sin?????①当???0,?时,?4?sin3??cos3?sin?cos?12AB?BC????2?2?22sin2?cos2?cos2?sin2?sin?cos?sin2??????π???②当???,?时,由于t1?t0?t2,从而?cot??t0?t0?tan??t0,?42?ππ从而?cot?tan??t0?又t0?0,22tan?2t0(cos??sin?)sin3??cos3??????故0?t0?,由此AB?BC?2sin?cos?sin2?cos2?sin?(cos??sin?)(sin?cos?)sin3??cos3?1cos?????sin2?cos3?sin2?cos2?cos?sin2??2sin2?sin2??2cos2?2??1?cos2????1?cos2???2cos2??????3??3?2?1?cos2???1?cos2???2cos2??2?2????3?3??332,

当且仅当cos??333时等号成立,故A?B??B?C??,故矩形周长大于33.23.

更多推荐

投篮,矩形,已知,汽车,单调,小题