2023年12月20日发(作者:奔驰e260敞篷)

2023年河北数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M???2,?1,0,1,2?,N?xx?x?6?0,则M∩N?(2??)?1,0,1?A.??2,2.已知z?B.?0,1,2?)C.??2?D.?2?1?i,则z?z?(2?.0A.?iD.1??????3.已知向量a??1,1?,b??1,?1?.若a??b?a??b,则(????)A.????14.设函数f?x??2x?x?a?B.?????1C.???1D.???-1)在区间?0,1?单调递减,则a的取值范围是(?2?A.???,B.??2,0?C.?0,2????D.?2,x2x2225.设椭圆C1:2?y?1?a?1?,C2:?y?1的离心率分别e1,e2.若e2?3e1,则4aa?(A.233)B.222C.3D.6)6.过点?0,?2?与圆x?y?4x?1?0相切的两条直线的夹角为?,则sin??(A.1B.154C.104D.64?Sn??为等差数列,则(?n?)7.记Sn为数列?an?的前n项和,设甲:?an?为等差数列;乙:?A.甲是乙的充分条件但不是必要条件C.甲是乙的充要条件8.已知sin??????B.甲是乙的必要条件但不是充分条件D.甲既不是乙的充分条件也不是乙的必要条件)A.7911,cos?sin??,则cos?2??2???(36117B.D.?C.?9991

二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据x1,x2,?x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,?x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,?x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,?x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,?x6的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级Lp?20?lg源的声压级:p,其中常数p0?p0?0?是听觉下线的阈值,p是实际声压.下表为不同声p0声源燃油汽车混合动力汽车电动汽车与声源的距离/m101010声压级/dB60~9050~6040已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为p1,p2,p3,则()A.p1?p2B.p2?10p32C.p3?100p02D.p1?100p2)11.已知函数f?x?的定义域为R,f?xy??yf?x??xf?y?,则(A.f?0??0C.f?x?是偶函数B.f?1??0D.x?0为f?x?的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体2

三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有14.在正四棱台ABCD?A1B1C1D1中,AB?2,A1B1?1,AA1?为.种(用数字作答).2,则该棱台的体积15.已知函数f?x??cos?x?1???0?在区间?0,2??有且仅有3个零点,则?的取值范围是.x2y216.已知双曲线C:2?2?1?a?0,b?0?的左、右焦点分别为F1,F2,点A在C上.ab点B在y轴上,F1A?F1B,F2A??2F2B,则C的离心率为3.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在?ABC中,A?B?3C,2sin?A?C??sinB.(1)求sinA;(2)设AB?5,求AB边上的高.18.如图,在正四棱柱ABCD?A1B1C1D1中,AB?2,AA1?4.点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2?1,BB2?DD2?2,CC2?3.(1)证明:B2C2∥A2D2;(2)点P在棱BB1上,当二面角P?A2C2?D2为150°时,求B2P.19.已知函数f?x??ae?a?x.x??(1)讨论f?x?的单调性;(2)证明:当a?0时,f?x??2lna?3.23

n2?n?bn?20.设等差数列?an?的公差为d,且d?1,令bn?,记Sn,Tn分别为数列?an?,an的前n项和.(1)若3a2?2a1?a3,S3?T3?21,求?an?的通项公式;(2)若?bn?为等差数列,且S99?T99?99,求d.21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;i?1,2,?,n,(3)已知:若随机变量Xi服从两点分布,且P?Xi?1??1?P?Xi?0??qi,则E??Xi??i?1qi,记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,i?1n?n求E?Y?.22.在直角坐标系xOy中,点P到x轴的距离等于点P到点?0,?的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于33.??1?2?4

参考答案一、选择题1C2A3D4D5A6B7C8B1.解:N????,?2???3,???,∴M?N??2?1?i1??i,∴z?z??i2?2i2??22??3.解:∵a??b?a??b,∴a??????a?b???b?2?1?????0,2.解:z???????∴???-14.解:由复合函数的单调性可知y?x?x?a?在区间?0,1?单调递减,∴范围是?2,???.a?1,∴a的取值25.解:由题意得:e1?22323a2?1a2?11,e2?,得.?,解得a?23aa256.解:易得?x?2??y?5,故圆心B?2,0?,R?记A?0,?2?,设切点为M,N,则AB?22,BM?5,可得AM?3sin??15?AM3?5,cos?∴sin??2sincos?sin?MBA??2242AB22222n?n?1?d,27.解:甲:∵?an?为等差数列,设其首项为a1,公差为d,则Sn?na1?∴SnSn?1ddSd?S??a1?d?n?a1?,n?1?n?,故?n?为等差数列,则甲是乙n222n?1n2?n?的充分条件;反之,?Sn?1SnnSn?1??n?1?Snnan?1?Sn?Sn?为等差数列,即为常数,????n?1nn?n?1?n?n?1??n?nan?1?Sn?t,故Sn?nan?1?t?n?n?1?,n?n?1?设为t,即故Sn?1??n?1?an?t?n?n?1?,n?2,5

两式相减有:an?nan?1?an?n?1??2tn,即an?1?an?2t,对n?1也成立,故?an?为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵sin??????sin?cos??cos?sin??11,cos?sin??,361112则sin?cos??,故sin??????sin?cos??cos?sin????.23631?2?cos?2??2???1?2sin2??????1?2????.9?3?2二、选择题9BD10ACD11ABC12ABD10.解:∵L1?L2?20?lgp1ppp?20?lg2?20?lg1?0,∴1?1,即p1?p2∴Ap0p0p2p21ppp1正确;L2?L3?20?lg2?10,即lg2?,∴2?102,∴B错误;p3p3p32∵L3?20?lgp3p?40,∴3?102?100,∴C正确;p0p0p1pp?90?50?40,∴lg1?2,∴1?100,∴D正确.p2p2p2L1?L2?20?lg11.解:选项A,令x?y?0,则f?0??0?f?0??0?f?0??0,故A正确;选项B,令x?y?1,则f?1??1?f?1??1?f?1?,则f?1??0故B正确;选项C,令x?y??1,则f?1????1??f??1????1??f??1?,则f?1??0,22再令y??1,则f??x????1??f?x??xf??1?,即f??x??f?x?,故C正确;22选项D,对式子两边同时除以xy22?x2y2?0,得到:?f?xy?f?y?f?x??2?2,故22xyyx?x2lnx,x?0f?x?可设2?lnx?x?0?,故可以得到f?x???,故D错误.x?0,x?06

12.解:选项A,球直径为0.99?1,故球体可以放入正方体容器内,故A正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为2?1.4,故B正确;选项C,底面直径0.01m,可以忽略不计,但高为1.8?长,故C不正确;选项D,底面直径为1.2?三、填空题13.64;14.3,3为正方体的体对角线的3,高为0.01m的圆柱体,其高度可以忽略不计,故D正确.76;615.2???3;1116.35513.解:当从这8门课中选修2门课时,共有C4C4?16;当从这8门课中选修3门课时,共有C4C4?C4C4?48;综上共有64种.14.解:如图,将正四棱台ABCD?A1B1C1D1补成正四棱锥,则AO?12212,SA?22,OO1?6,2故V?11676S1?S2?S1S2h?22?12?22?12??.3326????15.解:令f?x??cos?x?1?0得cos?x?1,又x??0,2??,则?x??0,2???,∴4??2???6?,即2???3.F2A2216.解:由F2A??F2B得?,设F2A??2x,F2B?3x.由对称性可得3F2B3F1B?3x,由定义可得,F1A?2x?2a,AB?5x,设?F1AF2??,则sin??3x342x?2a,解得x?a,∴AF1?2x?2a,?,∴cos???5x555x16a2?4a2?4c24AF2?2a,在?AF1F2中,由余弦定理可得cos???,516a2即5c?9a可得e?四、解答题2235.57

17.解:(1)由题意得A?B?3C,∴,A?B?C?4C??,∴C?∴B???A?C?3??A,4???4∵2sin?A?C??sinB,∴2sin?A????3???sin???A?,4??4?即2??2?222??sinA?cosAcosA?sinA,整理得:sinA?3cosA?2?222??22又∵sinA?cosA?1,A??0,??∴sinA?0,∴cosA?0解得sinA?31010,cosA?1010255(2)∵sinB?sin?A?C??sinAcosC?cosAsinC?由正弦定理可知bcb5,即,解得b?210??sinBsinC310210211bcsinA?ch,∴h?bsinA?622设AB边上的高为h,∵S?18.解:以C为原点,CD为x轴,CB为y轴,CC1为z轴建立空间直角坐标系则B2?0,2,2?,C2?0,0,3?,A2?2,2,1?,D2?2,0,2?(1)∵B2C2??0,?2,1?,A2D2??0,?2,1?(2)设P?0,2,t?,其中2?t?4∴PA2??2,0,1?t?,PC2??0,?2,3?t?,D2C2???2,0,1?,D2A2??0,2,?1?.∴B2C2?A2D2,∴B2C2∥A2D2???m?PA2?0设平面PA2C2的一个法向量为m??x,y,z?,则???m?PC2?0即??2x??1?t?z?0?,令z?2,则m??t?1,3?t,2?.??2y??3?t?z?0???n?D2A2?0设平面D2A2C2的一个法向量为n??x?,y?,z??,则???n?D2C2?08

即???2x??z?0,令z?2,则n??1,1,2?.?2y??z?0∵二面角P?A2C2?D2为150°,∴cosm,n?m?nmn?cos150??62t2?8t?14?3,解得:(舍去)或t?3.t?12∴B2P?119.解:(1)由题可得f??x??ae?1x①当a?0时,f??x??0,f?x?在???,???单调递减;②当a?0时,令f??x??0得x??lna∴当x????,?lna?时,f??x??0,f?x?在???,?lna?单调递减;当x???lna,???时,f??x??0,f?x?在??lna,???单调递增.(2)由(1)得当a?0时,f?x?min?f??lna??a?1?lna.2设g?a??a?1?lna??2lna?2??3?12??a?lna?,2?2则g??a??2a?21,令g??a??0可得a?a2∴当a??0,????2?2??时,g??a??0,g?a?在?0,?上单调递减;???2??2??2??2????????时,g?a??0,g?a?在?,???当a??2,?上单调递增.2????∴g?a?min?g??2?3??ln2?0,故g?a??0,∴当a?0时,f?x??2lna?.?2?2??20.解:(1)∵3a2?2a1?a3,∴3d?a3?a1?2d,即a1?d,an?nd故an?nd,n2?nn?1n?n?1?dn?n?3??∴bn?,Sn?,Tn?,and22d9

3?4d3?6??21,22d12即2d?7d?3?0,解得d?3或d?(舍),2又S3?T3?21,即故?an?的通项公式为:an?3n.(2)若?bn?为等差数列,则2b2?b1?b3,即2?222?31?23?4??,a1?da1a1?2d即a1?3a1d?2d?0,∴a1?d或a1?2d,n?n?1?dn?n?3?,Tn?.22d99?100d99?102又S99?T99?99,即??99,22d512即50d?d?51?0,∴d?或d?1(舍).50nn?n?3?dn?n?1?当a1?2d时,an??n?1?d,bn?,故Sn?,Tn?.d22d99?102d99?100又S99?T99?99,即??99,22d512即51d?d?50?0,∴d??(舍)或d?1(舍).5051综上所述:d?.50当a1?d时,an?nd,故Sn?21.解:(1)第二次是乙的概率为0.5?0.4?0.5?0.8?0.6.(2)第i次投篮的人是甲的概率为pi,则第i次投篮的人是甲的概率为1?pi,则pi?1?0.6pi?0.2?1?pi??0.4pi?0.2,构造等比数列pi?1???则pi?1?2?pi???,解得???1,5312?1?111??pi??,又p1?,∴p1??35?3?236i?1i?111?2?1?2?∴pi?????,则pi????36?5?6?5??1.3n?2?1???n1n5??2??n5???(3)当n?N时,E?Y??p1?p2???pn?????1?????.26318???5???31?510

5??2?当n?0时,E?Y??0,符合上式,故E?Y???1???18???5???n?n??.??31?2?22.解:(1)设P?x,y?,∵点P到x轴的距离等于点P到点?0,?的距离,∴y?1?1?x??y??,化简得y?x2?.42??22故W的方程为y?x?21.4(2)不妨设A,B,D三点在W上,且有BA?DA.设A?a,a???21?1?,由对称性不妨设k?1,?,设BA,DA的斜率分别为k,4?k2则直线BA的方程为:y?k?x?a??a?141?2y?x???422联立?,整理可得:x?kx?ka?a?0,则xA?xB?k?y?k?x?a??a2?1?4?∴AB??xA?xB?2??yA?yB?211?2a2kk?1?k2k?2a同理可得:AD?1?∴AB?CD?1?kk?2a?1?211?2ak2k??11?2??1?k2?k?2a??2a??1?kk??????kk????3?1?m?设f?m??2?1?k?k223m?2m?1??m?1?,11?m?3m??3,则f??m??2m?3?2?mmm220?上单调递增,可知f?m?在?0,?上单调递减,在?,∴f?m?在?0,1?上最小值为f???∴AB?CD?fk??1?2??1?2???1??2?27,4???3223,由于两处相等的条件不一致,∴矩形ABCD的周长为2AB?CD?33.11??

更多推荐

投篮,已知,汽车,小题,单调,选项,距离,正方体