2024年1月6日发(作者:丰田普拉多2023款报价及图片)
▲▲〈1〉悬挂
在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、SAAB到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。
『悬挂在汽车底盘安放位置的示意图』
● 悬挂的概念和分类
首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。
悬挂把车架与车轮弹性地联系起来,关系到汽车的多种使用性能,是汽车最重要的三大总成之一(其它两个分别是:发动机和变速箱)。从结构上看,汽车悬挂仅是由一些杆、筒以及弹簧等简单构件组成,但汽车悬挂却是一个非常难达到完美要求的汽车总成,这是因为悬架既要满足汽车操纵稳定性的要求,又要保证汽车的舒适性要求,而这两方面又是相互矛盾的。为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及严重侧倾偏向,不利于汽车的转向,容易导致汽车操纵不稳定等。
『迈腾原型车大众帕萨特B6前麦弗逊、后多连杆悬挂』
悬挂的构件虽然简单但参数的确定却相当的复杂,厂家不但要考虑汽车的舒适性,操控稳定性还要考虑到成本问题。基于这三个问题不同厂家有不同的倾向性策略。也就产生了国内现在比较常见的五种悬挂:麦弗逊式独立悬挂、双叉臂式独立悬挂、单纵臂扭杆梁式半独立悬挂、连杆支柱式独立悬挂、多连杆式独立悬挂。
独立悬挂
独立悬挂系统是每一侧的车轮都是单独地通过弹性悬挂系统悬挂在车架或车身下面的。其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。不过,独立悬挂系统存在着结构复杂、成本高、维修不便的缺点,同时因为结构复杂,会侵占一些车内乘坐空间。
现代轿车大都是采用独立式悬挂系统,按其结构形式的不同,独立悬挂系统又可分为横臂式、纵臂式、多连杆式、烛式以及麦弗逊式悬挂系统等。
非独立悬挂
非独立悬挂系统的结构特点是两侧车轮由一根整体式车架相连,车轮连同车桥一起通过弹性悬挂系统悬挂在车架或车身的下面。非独立悬挂系统具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由于其舒适性及操纵稳定性都相对较差,在现代轿车中只有成本控制比较严格的车型才会使用,更多的用于货车和大客车上。
非独立悬挂系统的优点:
1.左右轮在弹跳时会相互牵连,轮胎角度的变化量小使轮胎的磨耗小。
2.在车身高度降低时还不容易改变车轮的角度,使操控的感觉保持一致。
3.构造简单,制造成本低,容易维修。
4.占用的空间较小,可降低车底板的高度。
非独立悬挂系统的缺点:
1.左右轮在弹跳时,会相互牵连,而降低乘坐的舒适性及操控的安定性。
2.因构造简单使设计的自由度小,操控的安定性较差。
『非独立悬挂』
▲▲〈2〉麦弗逊
麦弗逊悬挂(MacPhersan),是现在非常常见的一种独立悬挂形式,大多应用在车辆的前轮。简单地说,麦弗逊式悬挂的主要结构即是由螺旋弹簧加上减震器以及A字下摆臂组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并且可以通过对减震器的行程、阻尼以及搭配不同硬度的螺旋弹簧对悬挂性能进行调校。
麦弗逊悬挂最大的特点就是体积比较小,有利于对比较紧凑的发动机舱布局。不过也正是由于结构简单,对侧向不能提供足够的支撑力度,因此转向侧倾以及刹车点头现象比较明显。下面就为大家详细的介绍一下麦弗逊悬挂的构造以及性能表现。
● 麦弗逊悬挂的历史:
麦弗逊式悬挂是应前置发动机前轮驱动(ff)车型的出现而诞生的。ff车型不仅要求发动机要横向放置,而且还要增加变速箱、差速器、驱动机构、转向机,以往的前悬挂空间不得不加以压缩并大幅删掉,因此工程师才设计出节省空间、成本低的麦弗逊式悬挂,以符合汽车需求。
麦弗逊(Macphersan)是这套悬挂系统发明者的名字,他是美国伊利诺伊州人,1891年生。大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924年加入通用汽车公司的工程中心。30年代,通用的雪佛兰公司想设计一种真正的小型汽车,总设计师就是麦弗逊。他对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是悬挂。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬挂方式,创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实践证明这种悬架形式的构造简单,占用空间小,而且操纵性很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。
● 麦弗逊悬挂的构造:
麦弗逊式悬挂由螺旋弹簧、减震器、A字形下摆臂组成,绝大部分车型还会加上横向稳定杆。麦弗逊式独立悬架的物理结构为支柱式减震器兼作主销,承受来自于车身抖动和地面冲击的上下预应力,转向节(也可说车轮,因为转向节作用于车轮)则沿着主销转动;此外,其主销可摆动,特点是主销位置和前轮定位角随车轮的上下跳动而变化,且前轮定位变化小,拥有良好的行驶稳定性。
在麦弗逊式独立悬架中,支柱式减震器除具备减震效果外,还要担负起支撑车身的作用,所以它的结构必须紧凑且刚度足够,并且套上螺旋弹簧后还要能减震,而弹簧与减震器一起,构成了一个可以上下运动的滑柱。还有一个关键部件---A字型下摆臂,它的作用是为车轮提供横向支撑力,并能承受来自前后方向的预应力。车辆在运动过程中,车轮所承受的所有方向的冲击力量就要靠支柱减震器和A字型下托臂这两个部件承担。
● 麦弗逊悬挂的优缺点:
从上面的构造图可以看出,麦弗逊悬挂的构造其实非常简单,而这种简单带来的最大好处就是其质量很轻,并且体积很小,对于很多前置发动机前轮驱动的车辆来说,车头部分的大部分空间都要用来布置横置的发动机以及变速箱,留给悬挂的空间并不大,因此麦弗逊悬挂体积小质量轻的优势就会表现的非常明显。
而结构简单也是麦弗逊悬挂最大的软肋。与双叉臂以及多连杆悬挂相比,由于减震器和螺旋弹簧都是对车辆上下的晃动起到支撑和缓冲,因此对于侧向的力量没有提供足够的支撑力度。这样就使得车辆在转向的时候车身有比较明显的侧倾,并且在刹车的时候有比较明显的点头现象。很多采用麦弗逊悬挂的小型车为了控制成本,也只能将这样的缺陷保留。虽然通过增加防倾杆能减小车辆侧倾,但是却不能根治这种情况。不过象宝马M3,保时捷911这样的高性能车型上,通过调整弹性元件以及增加拉杆等调校,麦弗逊悬挂也一样可以变得非常强悍,但这也背离了麦弗逊悬挂体积小,质量轻,成本低的特点。
● 麦弗逊悬挂在车型上的应用:
『众多车型都采用麦弗逊独立前悬挂』
麦弗逊悬挂是非常常见的悬挂类型,在全球汽车市场都有非常广泛的应用。在国内市场,麦弗逊悬挂也是众多车型的首选悬挂,其中最新应用麦弗逊前悬挂的车型有上海通用别克新君威、新君越、北京现代ix35、一汽大众高尔夫6、比亚迪F0等车型。从这我们也能看出麦弗逊悬挂应用的广泛,微型车、紧凑型车、中级车以及SUV车型上,都能见到麦弗逊悬挂的身影。而德国跑车的代表保时捷911也同样全系采用麦弗逊悬挂,这足以表现出麦弗逊悬挂应用的广泛。
● 由麦弗逊悬挂而衍生出来的悬挂:
由于麦弗逊悬挂先天性的侧向支撑不足,由此很多厂家也在尽可能保留麦弗逊悬挂体积小、质量轻的优势的同时,通过各种调整和变化以加强其侧向支撑的能力。由麦弗逊悬挂演变而来的悬挂主要有宝马1系和3系上采用的宝马双球节减震支柱前悬挂,还有专门针对后悬挂的连杆支柱式悬挂。下面就为大家简单介绍一下这几种麦弗逊悬挂的衍生产物。
1.宝马双球节减震支柱前悬挂
麦弗逊悬挂的另外一种衍生产品,就是宝马在1系和3系上采用的改良型麦弗逊悬挂,宝马将其称为“Double pivot strut type”(宝马官方中文名称为双球节减震支柱悬挂)。与标准的麦弗逊悬挂相比,宝马将这套悬挂的A字型下摆臂换成了一上一下两根连杆,两支点的变化也使得两根连杆在抑制车轮跳动的过程中互不干涉,将车轮各个定位参数的变化控制在了更小的范围内,从而提升了由此影响到的车身稳定性。同时,宝马采用的改良型麦弗逊悬挂也良好的继承了标准版麦弗逊悬挂体积小、质量轻的优势。不过双球节减震支柱前悬与标准麦弗逊悬挂相比也有一些不足,那就是较为复杂的结构使其转向灵敏度有所下降。
2.连杆支柱式独立悬挂
连杆支柱是麦弗逊悬挂用在后轮的一种方式,它将麦弗逊悬挂的下A字摆臂换成了两根横向连杆以及一根纵向拉杆,这能让它具有与麦弗逊悬挂相近的操控性能,又有比麦弗逊悬挂更高的连接刚度和相对较好的抗侧倾性能。但是同样也存在麦弗逊悬挂的缺点,就是稳定性不好,转向侧倾还是较大,需要加装平衡杆来减小转向侧倾。连杆支柱在一些日韩系车型的后悬挂上面有较多的应用,主要倾向舒适性。
总结:
从上面的介绍中相信大家已经对麦弗逊悬挂有了一定的了解,麦弗逊悬挂体积小,重量轻的特点,注定了它会大范围的应用在各种车型上,虽然麦弗逊悬挂的先天不足也让其在操控性上有些不足,但是通过加装横向稳定杆以及调整弹性元件可以改善侧向支撑力不足的情况。
▲▲〈3〉双叉臂
『典型的双叉臂式独立悬挂结构图』
双叉臂式悬挂又称双A臂式独立悬挂,双叉臂悬挂拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。双叉臂式悬挂的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小。
『阿尔法·罗密欧159的前悬采用了双叉臂式悬挂』
『大众途锐的双叉臂悬挂结构图』
双叉臂式悬挂通常采用上下不等长叉臂(上短下长),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损,并且能自适应路面,轮胎接地面积大,贴地性好。
『双叉臂式悬挂运动性出色,为法拉利、玛莎拉蒂等超级跑车所运用』
相比麦弗逊式悬挂双叉臂多了一个上摇臂,不仅需要占用较大的空间,而且其定位参数较难确定,因此小型轿车的前桥出于空间和成本考虑一般不会采用此种悬挂。但其具有侧倾小,可调参数多、轮胎接地面积大、抓地性能优异,因此绝大部分纯正血统的跑车的前悬挂均选用双叉臂式悬挂,可以说双叉臂式悬挂是为运动而生的悬挂,法拉利、玛莎拉蒂等超级跑车以及F1方程式赛车均采用了双叉臂式前悬挂。
国内采用双叉臂式前悬挂的轿车主要有一汽丰田皇冠和一汽丰田锐志,以及奥迪的豪华SUV。
优点:横向刚度大、抗侧倾性能优异、抓地性能好、路感清晰;
缺点:制造成本高、悬架定位参数设定复杂。
适用车型:运动型轿车、超级跑车以及高档SUV前后悬架。
▲ ▲〈4〉双横臂
双横臂式悬挂和双叉臂式悬挂有着许多的共性,只是结构比双叉臂式简单些,也可以称之为简化版的双叉臂式悬挂。同双叉臂式悬挂一样双横臂式悬挂的横向刚度也比较大,一般也采用上下不等长的摇臂设置。而有的双横臂的上下臂不能起到纵向导向作用,还需要另加拉杆导向。这种结构较双叉臂更简单的双横臂悬挂性能介于麦弗逊悬挂和双叉臂悬挂之间,拥有不错的运动性能,一般使用在A级或者B级家用车上,国内采用双横臂式前悬挂的主要有:广州本田雅阁、一汽轿车马自达6,东风本田思域等。
这一代的本田思域将传统的双叉臂结构改为双横臂结构,调校上更偏向于舒适
▲ ▲〈5〉钢板弹簧
钢板弹簧(Leaf Spring) 钢板弹簧是汽车悬架中应用最广泛的一种弹性元件,它是由若干片等宽但不等长(厚度可以相等,也可以不相等)的合金弹簧片组合而成的一根近似等强度的弹性梁。
原理
当钢板弹簧安装在汽车悬架中,所承受的垂直载荷为正向时,各弹簧片都受力变形,有向上拱弯的趋势。这时,车桥和车架便相互靠近。当车桥与车架互相远离时,钢板弹簧所受的正向垂直载荷和变形便逐渐减小,有时甚至会反向。
主片卷耳受力严重,是薄弱处,为改善主片卷耳的受力情况,常将第二片末端也弯成卷耳,包在主片卷耳的外面,称为包耳。为了使得在弹性变形时各片有相对滑动的可能,在主片卷耳与第二片包耳之间留有较大的空隙。有些悬架中的钢板弹簧两端不做成卷耳,而采用其他的支撑连接方式,如橡胶支撑垫。
扁平长方形的钢板呈弯曲形,以数片叠成的底盘用弹簧,一端以梢子安装在吊架上,另一端使用吊耳连接到大梁上,使弹簧能伸缩。目前适用于一些非承载车身的硬派越野车及客/货车上。
优缺点
它的优点是结构简单,工作可靠,成本低廉,维修方便。它既是悬架的弹性元件,又是悬架的导向装置。它的一端与车架铰接,可以传递各种力和力矩,并决定车轮的跳动轨迹。同时,它本身也有一定的摩擦减震作用。一举三得,所以广泛用于非独立悬架上。
它的缺点是只能用于非独立悬架,重量较重,刚度大,舒适性差,纵向尺寸较长,不利于缩短汽车的前悬和后悬,与车架连接处的钢板弹簧销容易磨损等。
尽管缺点不少,但钢板弹簧至今仍在各种汽车上大量使用。为了改进钢板弹簧的性能,减轻重量,提高寿命,出现了变截面钢板弹簧、单片弹簧等。
▲ ▲〈6〉整体桥
整体桥基本结构
整体桥就是有整体的车桥结构连接两个车轮,车桥不能断开,同一车桥上的两个车轮没有相对运动,这样的一套悬挂结构。整体桥悬挂的历史几乎伴随汽车的诞生就开始了,发展到如今,它的结构并没有太大的变化。对于驱动桥来说,主要还是由差速器壳体、桥管、半轴、轴承等部分组成,而对于非驱动桥的整体桥来说,其结构更为简单,且现在多为货车采用。
『采用半浮式半轴的整体桥结构示意图』
从整体桥半轴的结构类型上,又可以分为半浮式和全浮式半轴两种类型。半浮式半轴直接与轮毂连接,除承受驱动力之外,半轴端部还承受来自轮毂的纵向扭力,其负荷有限,但结构简单,重量轻,因而多用于早期的轿车和轻型货车,现在也不多见,只有牧马人等以攀爬见长的车型还在使用。而全浮式半轴通过法兰、轴承与轮毂连接,半轴只传递驱动力,而不承受扭力,由车桥桥管承受纵向扭力,其应用范围更为广泛,现在的大多数采用整体桥悬挂的乘用车都使用全浮式半轴结构。
『北京2020系列的全浮式半轴结构示意图』
『全浮式半轴,可以清晰的看见半轴端两侧的法兰盘固定结构和钢板弹簧』
除开半轴的差异,整体桥悬挂主要的差别还体现在与悬挂搭配的弹性元件上面,较为常见的有钢板弹簧、螺旋弹簧两种类型,此外还有空气弹簧、扭杆弹簧等较为少见的弹性元件类型。钢板弹簧的承载力强,结构简单,维护起来也很容易,缺点是轮胎运动轨迹受限,公路性能和舒适性一般。而螺旋弹簧能提供更大的轮胎自由行程,同时需要多条连杆进行辅助连接,结构较为复杂,此外维修起来也相对繁琐一些。
『悍马H3的后悬采用钢板弹簧』
『螺旋弹簧的行程更大,利于极限的越野情况,但需要多条连杆连接车桥和车体』
另外,整体桥悬挂并不意味着半轴直接和车轮中心相连,因为出于提升车辆离地间隙的目的,很多越野车采用了门式车桥的结构,半轴轴端会高于车轮中心,半轴通过安装在车桥两端的齿轮组驱动车轮,这种车桥结构更为复杂,多用于强调极限越野环境下使用的车型。
『奔驰乌尼莫克所用的门式车桥及其结构示意图』
整体桥悬挂的优势与不足之处
承载力强
由于有桥管负担部分或者全部垂直方向的载荷,因此整体桥悬挂的承载能力确实非常出众,就拿消费者比较熟悉的长城哈弗来说,它的最大承载质量达到了629公斤,大大超出一般轿车400公斤上下的承载质量。而大多采用钢板弹簧加整体桥悬挂的皮卡的装载能力更是惊人,在国内的汽车产品目录已经划到了轻型卡车的行列。
『长城哈弗及其使用的整体桥后悬,弹性元件为螺旋弹簧』
适合越野及恶劣环境下使用
由于结构相对简单,能承受更大扭力,同时采用螺旋弹簧的整体桥悬挂具备比一般悬挂大得多的行程,在崎岖环境下可以让四轮更好地获得抓地力,因此那些延续了越野血统的车型大多依然采用后整体桥或者前后整体桥的结构,比如奔驰G系列、路虎卫士、吉普牧马人、丰田FJ酷路泽等车型都是采用整体桥悬挂的典型。
『采用前后整体桥的牧马人可以应付崎岖的岩石路面』
『路虎家族的越野最强者卫士采用了前后整体桥的结构』
利于维护和改装
同样,由于结构简单,半轴等部位均在封闭桥管中运行,所以整体桥结构易于日常的维护和针对性的改装,不管你是日常使用,还是越野发烧友,在整体桥上“动手术”都会简单不少。比如在越野领域非常看重的差速器锁改装方面,如果差速器改装前后齿数相同,只需要更换差速器即可,而不必更换其他部件,同时也不会影响悬挂其他部件的设定,相比多连杆等类型的悬挂而言,整体桥的改装要容易很多。
『美版海拉克斯在缩短的DANA 60前桥上采用的ARB气动差速器锁』
『整体桥悬挂进行升高改装也很方便,图为卫士改装的可调行程套件』
公路性能一般
不过整体桥悬挂也有它自己的固有缺点,那就是在公路行驶时,单侧车轮的弹跳会直接影响到同一轴上的另外一侧车轮,这造成了整体桥悬挂的高速性能和舒适性都比较一般。因此,现在一些原先采用整体桥悬挂的中高端SUV车型已经开始逐步放弃整体桥这种悬挂类型,而改用循迹性和舒适度都更好的多连杆或者其他悬挂类型。
结语:
出于向舒适性和公路性能的妥协,现在采用整体桥悬挂的车型已经比较不多,但是这并不能抹杀它的实用性和在越野爱好者心目中的地位,由于整体桥悬挂结构简单,便于维护和改装,因此那些强调承载和越野的车型还会继续沿用这种悬挂。
▲▲〈7〉拖曳臂
拖曳臂式悬挂我们姑且称之为半独立悬挂,从悬挂的大分类来看,所有的悬挂可以被分成两大类,即:独立悬挂和非独立悬挂。但是在但纵臂扭转梁悬挂上,这两个分类变得有些模糊。从悬挂结构来看属于不折不扣的非独立悬挂,因为左右纵向摇臂被一跟粗大的扭转梁焊接在一起,但是从悬挂性能来看,这种悬挂实现的是具有更高稳定性的全拖式独立悬挂的性能。
『典型的拖曳臂式后悬挂』
『加装了防倾杆拖曳臂式悬挂』
『大众甲壳虫采用拖曳臂式后悬挂』
拖曳臂式悬挂本身具有非独立悬挂的存在的缺点但同时也兼有独立悬挂的优点,拖曳臂式悬挂的最大优点是左右两轮的空间较大,而且车身的外倾角没有变化,避震器不发生弯曲应力,所以摩擦小。拖曳臂式悬挂的舒适性和操控性均有限,当其刹车时除了车头较重会往下沉外,拖曳臂悬挂的后轮也会往下沉平衡车身,无法提供精准的几何控制。
不同厂家对这种悬挂的称谓不同:如:纵臂扭转梁独立悬挂,纵臂扭转梁非独立悬挂,H型纵向摆臂悬挂等等。归根结底他们都是同一种悬挂结构——拖曳臂式悬挂,只是调教稍有不同。
『中小型车大多采用拖曳臂式悬挂』
在拖曳臂式悬挂的设计过程中,横梁在纵臂上的安装位置不同其表现出来的性能会非常的大,若横梁安装越靠近纵臂与车身的连接点,车子的舒适性就会越好但转弯时的侧倾也会大些。若横梁的安装在越靠近纵臂接近车轮中心,舒适性能会大打折扣,表现出来的特性则是以通过性和承载性为主。也更接近整体桥的设计。
『采用拖曳臂式悬挂的还有大家熟知的桑塔纳』
国内采用拖曳臂式后悬挂的主要有:东风标致207、广州本田飞度、一汽丰田卡罗拉、上海大众桑塔纳等。
『飞度、207等小车多采用拖曳臂式后悬挂』
优点:结构简单实用、占用空间最小、制造成本低 。
缺点:承载性能差、抗侧倾能力较弱、减震性能差、舒适性有限
适用车型:中小型汽车、低端SUV后悬挂
▲ ▲〈8〉多连杆
多连杆独立悬挂:
『典型的多连杆独立悬挂结构图』
多连杆独立悬挂,可分为多连杆前悬挂和多连杆后悬挂系统。其中前悬挂一般为3连杆或4连杆式独立悬挂;后悬挂则一般为4连杆或5连杆式后悬挂系统,其中5连杆式后悬挂应用较为广泛。
『奔驰S级的多连杆前悬挂』
『国产的奔驰E级前后悬都采用了多连杆悬挂』
多连杆悬挂结构想对复杂,材料成本、研发实验成本以及制造成本远高于其它类型的的悬挂、而且其占用空间大,中小型车出于成本和空间考虑极少使用这种悬挂。
『宝马与奥迪后悬挂也采用多连杆技术』
但多连杆式悬挂舒适性能是所有悬挂中最好的,操控性能也和双叉臂式悬挂难分伯仲,高档轿车由于空间充裕、且注重舒适性能何操控稳定性,所以大多使用多连杆悬,可以说多连杆悬挂是高档轿车的绝佳搭档。
国内前后悬挂均采用多连杆的车型有:北京奔驰E级轿车、华晨宝马的3系及5系轿车、一汽大众奥迪A4及A6L;采用多连杆前悬挂的车型有上海大众的帕萨特领域;采用多连杆后悬挂的有长安福特福克斯、一汽大众速腾、广州本田雅阁、上海通用君越、一汽丰田皇冠及锐志、一汽马自达6、东南汽车三菱戈蓝等。
『福克斯、马自达6、雅阁与皇冠后悬挂均采用多连杆』
▲ ▲〈9〉横向稳定杆
横向稳定杆(sway bar, anti-roll bar, stabilizer bar),又称防倾杆,是汽车悬架中的一种辅助弹性元件。它的作用是防止车身在转弯时发生过大的横向侧倾。目的是防止汽车横向倾翻和改善平顺性。 横向稳定杆是用弹簧钢制成的扭杆弹簧,形状呈“U”形,横置在汽车的前端和后端。杆身的中部,用套筒与车架铰接,杆的两端分别固定在左右悬架上。当车身只作垂直运动时,两侧悬架变形相同,横向稳定杆不起作用。当车身侧倾时,两侧悬架跳动不一致,横向稳定杆发生扭转,杆身的弹力成为继续侧倾的阻力,起到横向稳定的作用。
一般的量产车都会装上防倾杆但大多只限于前轮,目的是用来达成操控与舒适的妥协。防倾杆通常是固定在左右悬挂的下臂,车子在过弯时离心力会作用在车的滚动中心造成车身的侧倾,导致弯内轮和弯外轮的悬挂拉伸和压缩,造成防倾杆的杆伸扭转,利用杆身被扭转产生的反弹力来抑制车身侧倾。
防倾杆只有在作用时才会使悬挂变硬,不像硬的弹簧会全面的使悬挂变硬。如果要完全靠弹簧来减少车身的侧倾那可能需要非常硬的弹簧,更要用阻尼系数很高的避震器来抑制弹簧的弹跳,这样一来我们就必须去承受硬的弹簧和避震器所造成舒适型不良的后遗症。但是如果配合适当的防倾杆不但可以减少侧倾,更不必牺牲应有的舒适性和循迹性。因此,防倾杆和弹簧的搭配是达成舒适性和操控性妥协的最可行方法。
▲▲〈10〉减震器
减震器(Vibration Damper) ,减震器主要用来抑制弹簧吸震后反弹时的震荡及来自路面的冲击。在经过不平路面时,虽然吸震弹簧可以过滤路面的震动,但弹簧自身还会有往复运动,而减震器就是用来抑制这种弹簧跳跃的。减震器太软,车身就会上下跳跃,减震器太硬就会带来太大的阻力,妨碍弹簧正常工作。在关于悬挂系统的改装过程中,硬的减震器要与硬的弹簧相搭配,而弹簧的硬度又与车重息息相关,因此较重的车一般采用较硬的减震器。与引震曲轴相接的装置,用来抗衡曲轴的扭转振动(即曲轴受汽缸点火的冲击力而扭动的现象)。
▲▲〈11〉可变悬挂
可变悬挂是指可以手动或车辆自动改变悬挂的高低或软硬来适应不同路面的行驶需求。
关于悬挂的问题是消费者比较关心的一个因素,因为它直接影响到车辆的舒适性和操控性。然而以当今的科技水平来说,普通的弹簧避震很难做到两全其美。在人们不断在汽车领域追求完美的过程中,可变悬挂系统诞生了。可变悬挂的作用是通过手动或车辆自动改变悬挂的高低/软硬以适应不同路面的行驶需求。
空气悬挂
技术特点:底盘可升降,应用车型广泛
技术不足:可靠性不如螺旋弹簧
应用车型:奔驰S350、奥迪A8L、保时捷卡宴等
其实提到主动悬挂系统,我们首先想到的,并且应用最广泛的自然是空气悬挂,而在系统组成上,它主要是由
控制电脑、空气泵、储压罐、气动前后减震器和空气分配器等部件。主要用途就是控制车身的水平运动,调节车身的水平高度以及调节减震器的软硬程度。
通常来讲,装备空气式可调悬挂的车型前轮和后轮的附近都会设有离地距离传感器,按离地距离传感器的输出信号,行车电脑会判断出车身高度变化,再控制空气压缩机和排气阀门,使弹簧自动压缩或伸长,从而降低或升高底盘离地间隙,以增加高速车身稳定性或复杂路况的通过性。
而在日常调节中,空气悬挂会有几个状态。1、保持状态。当车辆被举升器举起,离开地面时,空气悬挂系统将关闭相关的电磁阀,同时电脑记忆车身高度,使车辆落地后保持原来高度:2、正常状态,即发动机运转状态。行车过程中,若车身高度变化超过一定范围,空气悬挂系统将每隔一段时间调整车身高度:3、唤醒状态。当空气悬挂系统被遥控钥匙、车门开关或行李厢盖开关唤醒后,系统将通过车身水平传感器检查车身高度。如果车身高度低于正常高度一定程度,储气罐将提供压力使车身升至正常高度。同时,空气
悬挂可以调节减震器软硬度,包括软态、正常及硬态3个状态(也有标注成舒适、普通、运动三个模式等),驾驶者可以通过车内的控制钮进行控制。
当然,相比传统悬挂,由于空气式可调悬挂结构较为复杂,其出现故障的几率和频率也会高于螺旋弹簧悬挂系统,而用空气作为调整底盘高度的动力来源,相关部件的密封性也是一个问题,另外,如果频繁地调整底盘高度,还有可能造成气泵系统局部过热,会大大缩短气泵的使用寿命。当然,随着技术水平的不断提高,很多问题都得到了良好的解决,同时,应用的车型也越来越广泛。
电磁可调悬挂
技术特点:技术先进,系统响应迅速。
技术不足:成本较高,多应用于豪华车型上,稳定性有待检验。
应用车型:奥迪TT、凯迪拉克SLS、凯迪拉克CTS
所谓电磁式可调悬挂就是利用电磁反应来实现汽车底盘高度升降变化的一种悬挂方式,它可以在极短的时间内作出反应。来抑制振动,保持车身稳定。特别是在一些相对极端的环境下,比如高速行车中突然遇到颠簸,电磁悬挂的优势就会非常明显,它的反应速度可以比传统悬挂快5倍。
在系统组成方面,电磁悬挂系统是由行车电脑、车轮位移传感器、电磁液压杆和直筒减震器组成。在每个车轮和车身连接处都有一个车轮位移传感器,传感器与行车电脑相连,行车电脑又与电磁液压杆和直筒减震器相连。电磁减震器的奥秘在于其中充当阻尼介质的电磁油液,这种电磁液中是由合成的碳氢化物和细微的铁粒组成。而这些金属粒子在普通状态下,会杂乱无章的分布在液体中,而随着电磁场的产生及磁
通量的改变,它们就会排列成一定结构,粘滞系数也随之改变,进而改变阻尼。而电磁场的强度只需要改变电流即可控制。也就是说这套系统的控制只需要改变电流就能够达到控制阻尼系数的目的。
其实这个减震过程,主要就是在车辆行驶到颠簸路面,引起车轮跳动的时候,传感器会迅速将信号传至控制系统,控制系统发出相应指令,将电信号发送到各个减震器的电子线圈,使电流的运动产生磁场,在磁场的作用下,电磁液的粘度得到改变,从而达到控制车身、减震的目的。而如此复杂的过程实际上只是瞬间完成。举个例子说当你读完以上这几行文字时,这个过程已经可能已经完成了3000次。(每秒可达1000次)
液压可调悬挂
技术特点:底盘可升降,采用液压油耐用性更好
技术不足:技术水平相对老旧,反应速度偏慢
应用车型:雪铁龙C5(海外) 雪铁龙C6
液压式可调悬挂。顾名思义,就是利用液压变化来调节车身的悬挂系统。它的核心部件是一个内置式电子液压集成模块,可以根据车辆行驶速度对减震器的伸缩频率和程度加以调整。另外,由于不同车型的重心分配有所同,因而通常要在汽车重心的附近安装纵向横向加速度横摆陀螺传感器,用来采集车身震动、车轮跳动以及倾斜状态等信号,这些信号经过行车电脑运算,并把相应执行信号传递给四个执行油缸,并以增减液压油的方式来改变离地间隙等。
与空气式可调悬挂系统类似,液压式可调悬挂也可以进行底盘升高或自动调节。举个例子说,我们以老款雪铁龙C5车型上的这套名为的液压式可调悬挂来做个比方。它在停车时,其车身高度自动降为最低,车发动后恢复车身高度。在车辆行驶状态下,城市道路及车速低于110公里/小时时,会采用标准高度;当车速超过110公里/小时时,电子液压集成块控制车身头部降低15毫米,车尾部降低11毫米。降低重心可以改善车辆行驶稳定性,减小迎风最大截面和降低对侧风的敏感度,同时降低油耗;当车速低于90公里/小时后车身恢复到标准高度;路况不好时,电子液压集成块控制车身升高,以最大限度保证减震行程长度与舒适性。
电子液力式可调悬挂
技术特点:控制精准,反应速度快
技术不足:稳定性有待检验
应用车型:别克新君越、欧宝雅特(海外)
电子液力式可调悬挂也称连续减震控制系统(CDC),它也是主动悬挂的一种。这套系统可以独立控制每个车轮的悬挂阻尼。其电子感应器能根据读取路况信息,适时对减震器作出调整,使之在软硬间频繁切换。从而更迅速准确地控制车身的侧倾、俯仰以及横摆跳动。提高车辆高速行驶和过弯的稳定性。
而与较为传统的液压式可调悬挂不同,电子液力式悬挂对电子设备的依赖性要更强。核心部件由中央控制单元、CDC减震器、车身加速度传感器、车轮加速度传感器以及CDC控制阀构成,其中减震器是基于传统的液压减震器构造,减震器内注有油液,有内外两个腔室,油液可通过联通两个腔室间的孔隙流动,在车轮颠簸时,减振器内的活塞便会在套筒内上下移动,其腔内的油液便在活塞的往复运动的作用下在两个腔室间往返流动。油液分子间的相互摩擦以及油液与孔壁之间的摩擦对活塞的运动形成阻力,将震动的动能转化为热量,热量通过减震器外壳散发到空气中,这样就实现了减震器的“减震”过程。
话又说回来,CDC并不算非常先进的悬挂技术,只能说应用在合资品牌中型车上并不多见。其实在2004年,这套系统就已经装备到了欧宝雅特车型上。换言之,CDC至少在5年之前就应用到了量产车型上。而到2008年,在通用的全新中型车平台--Epsilon II平台上,欧宝的Insignia(新君威的原型车)诞生了,它所应用的Flex Ride自适应底盘系统,就是基于CDC系统而来的。
▲▲〈12〉可变转向比
可变转向比即根据汽车速度和转向角度来调整转向器传动比,当汽车开始处于停车状态,汽车速度较低或者转向角度较大时,提供小的转向器传动比;而当汽车高速行驶或者转向角度较小时,提供大的转向器传动比,从而提高汽车转向的稳定性。
不同厂家对这类系统的叫法可谓五花八门,比如宝马称之为AFS主动转向系统(Active Front Steering,),奥迪将其称之为动态转向系统(Audi Dynamic Steering),雷克萨斯/丰田使用的则是可变齿比转向系统VGRS(Variable Gear Ratio Steering),而奔驰的可变转向比系统则以“直接转向系统”命名。虽然功能类似,但是他们使用的技术却是截然不同的。
可变齿比转向系统在技术层面上并不是一个水平的,目前主要有两种方式实现这种功能,一种方式是依靠特殊的齿条实现,原理简单,成本也相对较低,没有过高的技术含量,而另一种就比较复杂,是通过行星齿轮结构和电子系统实现的。
机械式可变转向比系统:
它主要是在“齿轮齿条机构”的“齿条”上做文章,通过特殊工艺加工齿距间隙不相等的齿条,这样方向盘转向时,齿轮与齿距不相等的齿条啮合,转向比就会发生变化,中间位置的左右两边齿距较密,齿条在这一范围内的位移较小,在小幅度转向时(例如变线、方向轻微调整时),车辆会显得沉稳,而齿条两侧远端的齿距较疏,在这个范围内,转动方向盘,齿条的相对位移会变大,所以在大幅度转向时(如泊车、掉头等),车轮会变得更加灵活。这种技术除了对齿条的加工工艺要求比较严格之外,并没有多少“高科技”在其中,缺点在于齿比变化范围有限,并且不能灵活变化,而优势也很明显--完全的机械结构,可靠性较高,耐用性好,结构也非常简单。
电子式可变转向比系统:
科技含量高,相比机械式可变转向比系统,电子式可变转向比系统使用了更复杂的机械结构并且需要与电子系统结合使用。能够更好的实现“低速时轻盈灵敏,高速稳健厚重”的需求,其为车辆行驶带来的便利性和稳定性都是普通的可变助力转向系统和单纯的“机械式”可变齿比转向无法比拟的。
参考资料:
车168-《方向盘下的玄机(2):详解可变转向系统》
直接转向系统
奔驰对可变转向比命名为“直接转向系统”,采用的是机械式可变转向比,在转向角较大时,直接转向系统采用更为直接的转向传动比,比如在停车或急转弯时,可以提高汽车的灵活性和转向舒适性。这个系统的关键部件是一个齿条,齿条的齿距是变化的,齿距中间密,两头疏。因此转向角较小时,转向比较间接,而转向角变大后,转向就变得直接了。因此这种可变的转向比是靠简单的纯机械的方式实现的。
直接转向系统优缺点
直接转向系统除了对齿条的加工工艺要求比较严格之外,并没有多少“高科技”在其中,缺点在于齿比变化范围有限,并且不能灵活变化,而优势也很明显--完全的机械结构,可靠性较高,耐用性好,结构也非常简单。
主动转向
宝马将可变转向比命名为\"主动转向系统\",采用的是电子式可变转向比系统,它的核心是一个集成在转向柱内的行星齿轮组。组件中一个电动马达根据车辆的当前速度,按比例调节前轮转向角度。
低速行驶时,例如在城市交通中、驻车时或者行驶于蜿蜒的山路时,主动转向系统增大转向角度。前轮针对方向盘的小幅转动,立刻作出响应,确保驾驶员能够穿过紧凑的空间,而不需要多次转动方向盘。驻车更简单,灵活性得到了加强。
『主动转向介绍视频』
速度较高时,转弯更加渐进,要求较小的转向角度。因此,主动转向系统降低针对方向盘所有转动的转向角变化量。从而使驾驶员在高速时获得更为精准的转向,并享受更多的稳定性和舒适。
如果车辆受到不稳定的威胁,例如过度转向或者在多变表面制动时,DSC动态稳定控制系统识别问题,并通过主动转向系统克服问题。例如,为了降低不安全的偏航,主动转向系统可以更快提高方向盘的角度。主动转向系统不会妨碍方向盘和前轮之间的直接连接,这样即使在电子系统完全失效时,车辆仍始终保持完全可控。
▲▲〈13〉后轮转向
人们常会用精准、轻便来评价一款车的转向系统,而且转向系统直接关乎车辆的行驶安全与操控性能。在固有的思维里,转向或许只是前轮的事情,今天我们就突破思想的束缚,来谈谈能够提升转向性能和安全的利器——后轮转向。
● 车辆的三种转弯行驶特性
在谈及具体问题前,我们先来说说车辆的转弯行驶特性。转向特性一般可以分为不足转向、中性转向和过度转向三种情况。
① 不足转向表现为车辆在弯中的实际转向角度比前轮的转动角度小,也就是前轮出现了向外侧的滑动,这种转弯也俗称“推头”。
② 转向过度表现为车辆在弯中的实际转向角度比前轮的转动角度大,也就是后轮出现了向外侧的滑动。
③ 中性转向表现为车辆在弯中的实际转向角度恰好是前轮的转动角度,这种转向特性往往可以达到最大的转弯速度,但是这也降低了驾驶员对车辆在一定程度上接近物理极限的主观感受。
对于前驱车来说,在出现不足转向时,可以通过降低车速来解决。但是如果出现较严重的转向过度则需要反打方向并配合加油来通过,这也是漂移的技巧,不过这对驾车人的要求很高。所以一般来说,普通民用车在转向特性的调校上会偏向于轻微的不足转向以保证行驶的稳定。
● 后轮转向对整车转向特性的影响
了解了车辆的转向特性后,我们再来看看后轮转向对车辆的整体转向特性会产生什么样的影响。后轮转向存在与前轮同向和反向两种情况,而且这两种情况也会表现出两种完全不同的转向特性。简单来说就是同向增加不足转向,反向增加过度转向。车辆在低速行驶时,可以通过后轮与前轮的反向转动来适当增加转向过度。高速行驶的车辆遇到紧急变线的情况时,在没有任何电子辅助系统的帮助下,很容易出现转向过度的倾向,通过后轮产生一个很小但很重要的与前轮相同方向的转向则可以弥补转向过度的趋势,这样会让汽车有更好的平衡性。
『车辆在制动(左)和右转(右)时 轮胎与路面接触面的变化』
车辆在过弯时,车轮触地面积以及车轮定位的变化会导致转向特性的变化。应该说,后轮转向技术可以弥补由于使用橡胶充气轮胎所导致的车辆转向机构的先天缺陷。这种后轮转向更像是ESP系统的工作原理,即车辆高速运动时,通过制动某个或某几个车轮,以保持车辆行驶姿态的稳定。
『车辆重心的转移会最终影响到车辆的转向特性』
后轮转向目前主要通过两种方式来实现,一种是通过机械结构来达到,另一种则是通过电机或液力来实现。通过机械结构来实现后轮转向往往是被动的,一般是依靠车辆在转弯时地面的侧向摩擦力来使后轮产生小幅度的转向,这里我们来看看标志雪铁龙的后轮随动转向技术。
● 后轮随动转向
这套结构其实很简单,它并非在后轮布置了一套完整的转向机构,而仅仅是在后轮与悬挂,悬挂与车身之间布置了一些橡胶软垫,通过橡胶使悬挂和车身实现柔性连接,由于橡胶存在一定弹性,所以在汽车转弯时,后悬挂连接点的橡胶软垫在横向力的作用下能发生一定程度的弹性形变,从而带动车轮做一定角度的变化。这个转向角度取决于橡胶软垫的软硬度。橡胶垫越软,后轮可变转向角度越大,但悬挂刚度降低稳定性差,橡胶软垫越硬,后轮转向角度越小,但悬挂刚度大,稳定性高。因此在设计时需要权衡其优缺点,根据汽车的实际用途的侧重点做调校,一般来说,后轮的转向角度都在3度以下。
『通过橡胶使悬挂和车身实现柔性连接 从而在转弯时实现后轮随动转向』
虽然这是一个被动的转向机构,但是其结构相对简单,技术含量低、成本低。所以它可以应用在一些经济性轿车上,比如富康车型等。
● 后轮主动式转向
最后我们再来看看采用电机来主动驱动后轮转动的BMW 7系车型。对于大型豪华车来说,不断加长的轴距为车内带来了良好舒适的乘坐空间,但是这也对车辆的操控性带来了一定的负面影响。无论是低速时的转弯半径,还是高速行驶时的稳定性都会打折扣。通过加入后轮转向系统则可以弥补轴距增加后对车辆行驶特性造成的影响,同时让一款豪华车同样具有很好的驾驶乐趣。这套主动式后轮转向系统的原理也并不复杂,就是一套丝杠螺母机构,电机驱动螺母带动丝杠产生轴向移动。这种轴向移动会带动后轮产生小幅度的转向,当车速在60km/h以上时,后轮与前轮同向偏转,提升高速过弯的稳定性。在60km/h以下时则反向偏转,增加车辆的灵活性。
『BMW的后轮主动转向』
更多精彩视频,尽在汽车之家视频频道
这套主动式后轮转向系统的科技含量主要还是集中在控制系统上,工作时,它需要接受车辆各种的动态行驶信号,然后综合判断输出一个相适的转向角度,任何计算的失误都有可能导致车辆失去控制,特别是在车辆高速行驶时。
全文总结:
对于民用车来说,轻微的不足转向特性可以保证车辆行驶的稳定性,但是车辆高速转弯时往往会产生过度转向,那么通过后轮转向系统,可以弥补这种过度转向带来的行车危险,同时对于中大型车以及豪华车来说,后轮转向可以使车辆在低速时更加灵活,高速过弯时也更加稳定,让驾驶同样充满乐趣。
▲▲〈14〉敏捷操控系统
敏捷操控系统是奔驰对装备在C级轿车上悬挂软硬调节的称呼,它可以根据路况来调整悬挂的软硬,以达到最佳的舒适型及操控性:在正常行驶并且减震器脉冲较低时,阻尼力自动降低,从而显著提高乘坐的稳定性,而且不影响操控安全性。当减震器脉冲更大时,例如在高速转弯或躲避障碍时,系统设置为最大阻尼力,从而有效地保持车辆的稳定性。
敏捷操控系统是一项纯粹的液压机械技术,不需要复杂的传感器或电子系统。这项技术主要基于减震器连杆中的一个旁通管,以及在单独油腔中运动的一个控制活塞。在减震器脉冲较低时,控制活塞迫使减震器油通过旁通管,在减震阀产生非常小的阻尼力,“更柔和的”减震器特性造就了奔驰的乘坐稳定性。
如果减震器受到更高的脉冲时,控制活塞移向其端部,这时减震器油不再流过旁通管。此时系统能够提供最大的减震效果。
▲▲〈15〉扭力转向
什么是扭力转向?
前驱车之所以会成为当今量产车的主流,就是因为它最大限度的缩小了机械占用空间,而使乘客拥有最为宽敞的乘坐空间,省去的传动轴也能为制造商们节约不少成本。而且,对于普通驾驶而言,前驱车较后驱车拥有更好的操控性,湿滑路面不易出现打滑现象。
『前驱车的布局最大限度的压缩了机械摆放的空间,将更多的空间留给乘客』
但凡事总是有利必有弊,当横置发动机的马力变得越来越大时,问题便逐渐显现了。因为FF车的传动轴需要负责转向及动力传递,而又因为变速箱位置的关系,左右传动轴常有一根长一根短的设计,当忽然有较大的扭矩从变速箱输出轴输出到左右两根传动轴时,就会因为力矩不同而造成车辆行进方向的跑偏,这就是所谓的扭力转向。换句话说,造成转向的主控因素是扭力、而不是驾驶人,因为扭力输出过大,因此造成车辆“非驾驶人自主性”的转向。
为什么会产生扭力转向?
为什么左右不等长的驱动轴会造成传递扭矩不同的结果呢?究其原因,悬架和万向节是罪魁祸首。首先,FF车的驱动轴的几何位置与轮轴是不重合的,驱动轴要拐两个小小的弯才能连接车轮,拐弯的地方,就由万向节负责连接。万向节虽然可改变动传递方向,但万向节也不是万能的,在改变驱动轴方向的同时被改变方向后的那根传动轴也会产生一定的甩动,所以要安装一个抗甩动的支点起稳固作用,如果没有支点固定,后端传动轴就会像一个搅拌器一样甩动。当万向节前后的驱动轴不成一直线的时候,万向节必須靠支点的反作用力把甩动的力转换成扭转的力,但只要万向节的磨擦消耗控制得宜,万向节的扭力传动效率相当高,尤其在改变传动角度不大的情況,磨擦损耗可能造成的左右扭力差异非常的小。
『由于连接车轮的半轴需要一定的自由度,所以半轴的几何位置不能与轮轴完全重合』
当左右传动轴不等长,左右两端万向节传动角度不同时,影响最大的是抗甩动支点的受力大小,这个力直接正比于传动角度的SIN函数,这个函数在角度接近180度附近时对角度变化很敏感。同时,由于这个支点是固定在悬架之上,悬架是有一定的自由度,当汽车进行加速的时候,由于重心后移,车头相对会有少量的抬高,这时,前吸震筒被拉长,传动轴短的一边角度变化较大,在扭力作用下前轮延伸幅度就比较大,而很多FF的汽车的前悬架都是采用麦弗逊形式,吸震筒本身就是前轮的支撑轴,如果前轮延伸就会产生外倾角的变化,外倾角稍有变化就可以改变轮地接触点,这样扭力转向的作用就有可能被放大。
如果把传动轴改成两端等长,传动角度两边相同,那么这个作用就可以被有效抑制。又如果车轮前伸时不会改变外倾角,那么扭力转向的作用也不至于被过度放大,问题也不会那么严重。简单来说,就是由于在引擎动力输出猛烈增加时,万向节由于角度不同引起不同的传递效率,而正因为引擎动力输出猛烈增加,车速提高,前悬架被拉长,引起外倾角的细小变化,更放大了这个问题,最终就导致了扭力转向的发生。
现在,问题已经迎刃而解,迈腾半轴的设计目的就是为了防止发生扭力转向时,过大的力矩将半轴折断。而歌诗图的工程师选择将较长的半轴设计成两段,即增加一段中间传动轴,这样便可以让两边半轴的长度相等,削弱扭力转向,这也是现今大多数FF车型采用的设计方式。
『VOLVO S40前轮半轴采用分段式设计,使左右半轴等长』
扭力转向如何避免
要解决FF车的扭力转向问题,最好就是能将传动轴做成等长,斯巴鲁的左右对称传动系统就是如此,无论前后,左右的驱动轴等长,或者使用精确的双叉臂和多连杆前悬架,也可以抑制外倾角的变化,最大限度的减轻扭力转向的问题,还可以使用现代的电子控制技术将左右轮的扭力调节得相对一样,也可以大大减低扭力转向的发生。
『斯巴鲁的AWD左右对称全时四驱系统,使左右的驱动轴等长』
其实,在机械结构布局上,前驱车同样可以做到左右半轴等长,只是工厂在设计之初都是经过权衡考虑的,平时的民用车(跑车为了完美的操控会斤斤计较,做到极致,故不在此范围内)仅仅为了半轴左右等长而修改差速器齿轮箱的布置,后果会影响到发动机位置、形式和发动机舱空间利用的经济性等等,很明显是得不偿失的。
总结:
以上看来,前驱车由于自身布局特点,扭力转向问题会对操控性产生一定影响,尤其是在大马力增压车型中,要想在急加速时避免扭力转向,保持良好的操控性,不光要有一副出色的悬挂系统,还要拥有一对足够坚固、设计合理的左右驱动轴互相配合,控制车轮达到最佳的行驶效果。这就解释了为什么之前有改装车主在换装更强劲的发动机后而发生半轴断裂的情况,可见驱动轴在前驱车中同样扮演着非常重要的角色。
▲ ▲〈16〉外倾角
从车头望向车轮,车轮与铅垂线的夹角称为外倾角, 若轮胎上端向外倾斜即左右轮呈\"\"形, 称为正外倾角,向内倾斜为负外倾角。基本上,正外顷角的设定有较佳的灵活度,而负外顷角具较稳定的直进性。
▲ ▲〈17〉整体主动转向
对于大型豪华车来说,不断加长的轴距为车内带来了良好舒适的乘坐空间,但是这也对车辆的操控性带来了一定的负面影响。无论是低速时的转弯半径,还是高速行驶时的稳定性都会打折扣。通过加入后轮转向系统则可以弥补轴距增加后对车辆行驶特性造成的影响,同时让一款豪华车同样具有很好的驾驶乐趣。这套主动式后轮转向系统的原理也并不复杂,就是一套丝杠螺母机构,电机驱动螺母带动丝杠产生轴向移动。这种轴向移动会带动后轮产生小幅度的转向,当车速在60km/h以上时,后轮与前轮同向偏转,提升高速过弯的稳定性。在60km/h以下时则反向偏转,增加车辆的灵活性。
『宝马7系整体主动转向系统』
这套主动式后轮转向系统的科技含量主要还是集中在控制系统上,工作时,它需要接受车辆各种的动态行驶信号,然后综合判断输出一个相适的转向角度,任何计算的失误都有可能导致车辆失去控制,特别是在车辆高速行驶时。
▲▲〈18〉助力转向
助力转向,顾名思义,就是通过增加外力来抵抗转向阻力,让驾驶者只需更少的力就能够完成转向,也称动力转向,英文为power steering,最初是为了让一些自重较重的大型车辆能够更轻松的操作,但是现在已经非常普及,它让驾驶变得更加简单和轻松,并且让车辆反应更加敏捷,一定程度上提高了安全性。
更多推荐
悬挂,转向,系统,车辆,车身,车轮,汽车
发布评论