2024年1月18日发(作者:2020福特探险者suv报价)

法拉利结构

法拉利F2007技术参数:

车型代号 F2007 车身总长 4545毫米

车身总宽 1796毫米 车身总高 959毫米

轴距 3135毫米 轮毂尺寸 13英寸

后轮轮距 1405毫米 前轮轮距 1470毫米

车身总重 600公斤(含水、润滑油和车手) 底盘结构 碳纤维蜂窝状符合结构

引擎代号 056 气缸数量 8

气缸夹角 90度 气阀数量 32

阀门驱动 气动 引擎排量 2398毫升

活塞直径 98毫米 引擎质量 95公斤

燃油 壳牌V-PowerULG62 润滑油 壳牌SL-0977

变速箱布置方式 纵置变速箱(带防滑差速锁) 变速箱结构 7挡连续式半自动变速箱(1倒挡)

制动系统 碳纤维通风刹车碟 悬挂系统 前后双叉臂(主动推杆、旋转减震器)

法拉利F2007深度分析:转用零龙骨 长轴距另有学问

法拉利的新车F2007从亮相到现在,已经有接近一个月的时间,公众在这段时间里对它的了解也越来越多。但是对于其设计的出发点、核心的技术变化却知之甚少,尤其是对加长轴距感到不解。为此,我们撰写了这篇深入的技术分析。文章不仅揭露了F2007发生的核心变化,更重要的是讲述了背后原因,希望对于热衷F1技术的车迷了解赛车,能够起到真正的帮助!

一,以空气动力学为设计出发点,延长车身轴距

法拉利的新车,通过查看技术参数就可以发现的变化是,轴距大幅增加了,而这背后,隐藏着巨大的学问。法拉利老车型248F1的轴距为3050毫米,新车F2007达到了3135毫米,增加了85毫米之多。这在大多数车队都在为新规格的普利司通轮胎而缩短赛车轴距、前移重量的情况下,似乎让人费解。

对此,法拉利的底盘总监科斯塔(Aldo Costa)这样说道:“这纯粹是因为空气动力学。我们不相信在本质上会对车辆的动力学造成巨大的冲击。相反,这为我们以更好的方式发展空气动力学创造了更多的可能。”

但科斯塔的话,或多或少在弱化加长轴距带来的负面效应。关于这点,我们需要先了解一下新轮胎发生的变化。冬季测试期间,普利司通方面已公开承认,与上赛季相比,新轮胎结构明显更弱了;不论是前胎还是后胎,都比两家轮胎供应商

提供轮胎的时期要弱。但是后轮扮演着更大的因素,这正是大多数车队缩短赛车轴距、前移重量的原因。

回到法拉利的新车,车队在新车发布会上表示,F2007增加的85毫米全部用于驾驶舱和前轮之间。以这种方式增加轴距,将对赛车的重量分配带来主要冲击,必然造成赛车的重量后移,显然这与普利司通的新胎特性是背道而驰的。那么法拉利为什么要这么做呢?这又牵涉到另一个因素,新的撞击测试规则。

FIA在本赛季,引入了更加严格的车尾撞击测试,造成车尾的气流效率受到影响。法拉利的空气动力学小组认为,夺回由于新尾锥造成车尾损失的下压力,比名义上的重量分配要求更重要。而且模拟工具告诉他们,即便是后轴的负荷增加,但只要能制造更强的后部空气动力学抓地力,以防止后轮出现滑动,同样能缓解后胎的负荷。换言之,加长轴距带来的负面效应,是可以通过空气动力学来克服的。

至此我们可以发现,法拉利在设计赛车的首要出发点是空气动力学,而不是如何去适应轮胎。当然,这也是很自然的,因为法拉利凭借与普利司通多年的合作,早已知道日本轮胎的秉性,即便是新胎发生了巨大的变化,法拉利也不会落在他人之后。

从本质上讲,F2007与248F1每一处空气动力学外貌的区别,都源自于设法提高通向尾部的气流,以克服更加严格的车尾撞击结构带来的负面效应。按照新规则规定,新尾锥不仅要求具有更高的吸能能力,其形状也进行了严格规定,而正是因为强制规定的外形,阻挡了中央扩散器的气流通道。因此扩散器的气流流量受到了限制,唯一弥补损失的下压力的办法是提高气流的流速。

而加长的轴距,将起到推动作用,同时还有新的零龙骨前悬挂结构和新的散热器设计。F2007的散热器接近呈水平放置,这样允许赛车侧箱的下沿内切的更加厉害。因此创造了更加有效的低压区,加速了气流沿着侧箱流向车尾。另外,更紧凑的车尾包装也促进了车腰收的更细。综合这两个新特征,大大的提高流向车尾横梁翼气流的速度,引导更多的气流从两轮之间流过,而不是让其从轮胎两侧散失,成生更多的阻力。

关于车尾横梁翼需要特别说明的是, 老车型248F1劈开的设计方案被保留了下来,这样主要是能够让中央的扩散器设计的更大。但是由于新赛季引入新的车尾撞击结构,因此大多数其他车队的设计师都认为,这样的设计将不再具备优势。不过很显然,法拉利的空气动力学部门主管埃里(Johe Iley)可不这么认为。

在空气动力学方面,F2007的变化还有散热器的入口和出口都进行了重新设计,这反映了散热器的不同的放置方式和尺寸的增加(关于F2007的尺寸加大,本文后面还将进行更加详细的分析)。从刚刚发布的新车,到本文截稿为止,F2007

都没有安装散热烟囱(但预留了安装位置),只在侧箱机盖上开凿了大面积的散热窗,另外,值得关注的是,新车还在变速箱的正上方开了一个气流出口。这在法拉利车上还是第一次。

法拉利在新车发布期间已明确表示,当前的车身套间是临时的,前翼和尾翼都是直接沿用248F1。前往墨尔本,会被换上新的。另外,实战版本的车型可能会重新装上位于鼻锥上的气流调节片,以将更多的气流向车尾输导。

二,零龙骨前悬挂 强化的单体壳

为了提高空气动力学效率,法拉利最终还是抛弃了一贯坚持的单龙骨设计,改用零龙骨布局。但是需要特别提到的是,F2007的下叉臂并不是直接连接到底盘上,而是像退化的双龙骨一样,通过两根微微凸出的加强筋与底盘(单体壳主体)间接相连。

这使得该区域的单体壳得到了加强,至于是否增加重量法拉利并未透露,但有一点可以肯定的是,会对悬挂几何结构的调节,带来了一定的限制。前文中提到,新车的轴距增加了,因此为了保证赛车拥有同样的扭转刚度,对单体壳进行强化成为必须,赛车的质量因此增加。

关于赛车的重量增加还包括散热器。F2007为了让侧箱下沿收的更窄,被迫改变了散热器的放置角度。新车的散热器类似于F2004的方案,接近水平放置。根据空气动力学设计的要求,侧箱的气流入口越小越好,当然,这与将侧箱下沿收的更窄的思想刚好吻合,但它同时又带来了另一个问题,如何维持其散热能力?在技术水平未取得突破性进展的情况下,既要缩小进气口尺寸,又要保持热交换能力不变,唯一的办法是增加散热器自身的尺寸,因此,F2007的散热器更大更重了。

提到质量,还有一点。法拉利在新车发布会上公开承认,单独为满足更加严厉的车头、车尾以及侧面撞击测试,新车的重量就增加接近十公斤,如今再加上上面提到的强化底盘和加大散热器带来的额外质量。因此,F2007配重自由度必然会受到进一步的影响。

当然,新规则带来的大约10公斤的质量,对于所有车队都是平等的,同时引发的外观变化也基本一样。“在鼻锥的溃缩变形形式上,必须取得进一步的发展。而车尾,FIA不仅规定了尾锥撞击结构能够吸收的最大的G值,还规定了空间要求,所以每一支车队尾锥的尺寸和形状都是一样的。”法拉利底盘总监科斯塔解释到。而这也正是MP4-22的尾锥改为传统设计的原因。

在底盘方面,要谈到的最后一点是后悬挂。新车的后悬挂保持了原来的结构,即扭杆与中央的萨切斯旋转减震器相连。在这里需要提到的一点是:旋转减震器是目前减震器中最紧凑的结构。它由萨切斯在2003年率先开发出来,法拉利F2003-GA是第一辆配备这种减震器技术的赛车。

言归正传,虽然F2007的后悬挂目前是使用的老结构,但改进工作会接踵而至。目前,一个旨在降低后胎工作负荷的发展项目正在进行。去年在赫雷斯对07款的轮胎进行首次测试时发现,软配方的轮胎在所有车上降级的速度都非常快,这使得改进后胎工作负荷的发展项目变得更加急迫。

除了应急方案,法拉利一种新的悬挂结构正在酝酿中,计划在季中推出,具体时间未定。

三, 引入无缝变速箱 优化引擎性能

从F2007开始,法拉利加入了由迈凯轮和本田率先开创的无缝变速箱俱乐部,只是法拉利更喜欢将这套系统称为快速换挡变速箱(quick shift gearbox)。“他几乎是同时换挡,节约了从一个挡位切换到另一个挡位的时间,科斯塔(Aldo Costa)在谈到新变速箱时说道。

2006年4月17日,法拉利首次对外公开正在开发自己的无缝变速箱系统。只是他们的路走的有些曲折。“现在我们正在测试这套系统,但是它不会在本赛季的比赛中使用。在我们最初的计划中有一个非常复杂的系统;它同时拥有极高的可靠性,但是系统太复杂了,不利于维护保养,又重又昂贵。”前技术总监罗斯-布朗(Ross Brawn)在当时说道。“所以我们打算造一个比较简单的,但这同时会伴随着一些风险,因此我们仍需要进行大量的测试,将风险降至最低。”

根据布朗在公众场合的口吻,他自始至终都在弱化无缝变速箱的优势。“使用无缝变速箱是有一定优势,但是它并不像人们想象的那么大。”

和旧变速箱一样,新变速箱也采用了碳纤维的外壳。但是进行了重新塑形,以满足尾部的空气动力学设计和新的尾锥规则要求。

引擎方面,法拉利的056在上赛季末被认为是最强的心脏。本赛季的版本是其基础上优化的产物,但是代号没有变。056 V8的活塞直径设计达到了FIA允许的上限:98毫米。新的引擎总监西蒙(Gilles Simon)表示,从提交引擎开始,改进工作便一直在进行,尽管是非常小的改动,但是效果很显著。当然,法拉利也需要对电子系统进行重新调整,以满足19000转/分的转速限制。

“FIA允许我们对燃烧室、凸轮轴和阀门进行改进,加上我们还减轻了一些部件的质量,使得引擎的扭矩输出曲线增强,并提高了可靠性。当然,我们还会与壳

牌携手发展燃油和润滑油,同时会改进气箱,并着眼于减少引擎的内耗。”西蒙在谈到新引擎时说道。

车身(BODY):F1赛车的车身采用碳素纤维增强塑料(CFRP)。这是一种异常坚固但却有着轻微重量的优异材料。在使用这种材料之后,被称为无大梁单体结构(Monocogue)的车身基础部分的重量竟然不可思议地只有30KG。而最后在安装了所有所需部件以及坐上驾驶员之后,整辆F1的重量也只有600KG而已,只有一般民用汽车的重量的三分之一左右。

发动机(ENGINE):根据规定,现在的F1赛车可以使用排气量3000CC以内的10缸发动机,其最高转速可以达到每分钟19000转,最高输出功率达到900马力。由于F1比赛所需要的稳定性,引擎制作的方向不只是单纯的高速,更需要适应长时间的高速运转以及为了得到更好的转弯性能,也必须提出小体积、轻重量和小尺寸等设计需求。

悬挂系统(SUSPENSION):F1赛车的悬挂系统被暴露在车身的外侧,这是所有方程式赛车的一个退热顶。虽然悬挂系统在F1中的功能与市面上销售的民用汽车相同,但是其较舒适来说更需要的是良好的驾驶性能,这需要让4个轮胎始终保持与地面接触行驶。而由于活动更好的空气动力学效果,在悬挂系统的形状上,F1也参考了一些飞机的设计。

轮胎(TYPE):试想持续以200公里以上的速度在路面上飞驰,没有一款好的轮胎显然是不行的。轮胎采用高抓地力的软质橡胶。一般使用的干胎有4条槽,而雨天使用的雨胎则更多且具有向外的排水槽。一般轮胎的寿命在150公里左右,也就是整个赛程的一半。现在F1的比赛中只有两大轮胎,桥石(Bridgestone)和米其林(MICHELIN)可供应选择。两大轮胎各具备优势,桥石各方面性能优秀,但是其工作所需要的温度却高过米其林,这使得新装配的轮胎在抓地力上略失优势,而且足以致命。而米其林各方面相对要略逊一点,特别是雨胎的设计更是被一些车队指责。

方向盘(STEERING):F1赛车的方向盘比起一般汽车的方向盘要来得小,整个体积相当于一个A4大小的笔记本电脑。虽小巧,但是其所拥有的功能却一点都不少。除了可以方便的转向、不离方向盘来换档等基本功能外,它更提供了对汽车内各部分的控制按钮。在这个方向盘上你可以随时调节汽车空气燃烧比、牵引力控制调节、与车队的工作人员进行沟通,甚至还可以控制自己身上的饮料。

刹车系统(BREAK SYSTEM):F1赛车的刹车系统与一般房车并无多太差异。也是由刹车碟和刹车缓冲器两个部分组成。不过由于比赛的激烈程度需要经常从300公里的极限降低到80公里的低谷,使得整个刹车系统的工作温度高达600度,所以整个系统的损耗率也相当之高。刹车碟和刹车缓冲器都有碳纤维材料制造而成,比较起以前使用的铁和石棉,显然碳纤维拥有更优秀的稳定性以及相对更轻巧的重量,比起过去的材质,现在整个刹车系统轻了6-8公斤。一个刹车系统的制造周期在3-5个月左右。在比赛中车手可以通过方向盘调节刹车的前后比例,一般是60%在前,40%在后,否则会造成后轮胎锁死。

车翼(WING):F1对空气动力学有着相当严格的要求,所以车翼部分至关重要。车翼分前翼和后翼,在F1比赛中,显然前翼更为重要。因为它的位置,它控制着空气在赛车其余部位的流动。对于车翼的使用国际汽联也有着严格的尺寸规定,前翼的直径不能超过1400毫米,深度不超过550毫米,高度不超过200毫米。但是前翼的翼面数量却不想后翼要被限制在两片。前翼的材料是碳纤维制成,虽然坚硬到不会由于空气动力受损,但是却十分容易碰撞破裂。特别是因为其位

于前轮的前面,所以在起步与超车的时候特别容易因为互相碰撞而造成前翼损坏而不得不去维修站更换。后翼的作用十分简单,只是牢牢地将车身抓在地面上。国际汽联规后翼的制作必须遵守1000毫米宽,350毫米长,200毫米深的范围。它也必须拥有足够的强度,必须能够承受1000牛顿的重力测试。针对不同的场地,车队一般具高、中、低三种不同下压力的后翼存在。

车型代号:法拉利F10 引擎代号:056 底盘结构:碳纤维蜂窝复合材料结构 汽缸形式:90度V8 悬挂:前后主动式推杆-扭转弹簧独立悬挂

燃油喷射系统:马涅蒂数字电子喷射Ferrari F10(9张) 点火器:马涅蒂静电点火 变速箱:法拉利纵置变速箱带防滑差速器 缸体材质:铸铝

气阀数量:32气阀 引擎排量:2398毫升 活塞直径:98毫米 引擎质量:大于95公斤 制动系统:Brembo碳纤维通风刹车碟 车身总重:620公斤(含水、润滑油和车手) 轮毂尺寸:前后13英寸BBS轮毂

一部F-1赛车从概念到制作完成要花上250,000人工时,及超过人民币1,200万的材料费用。

每一站比赛后,赛车必须完全分解检视后再重新组装,每一部赛车所必须作的检查项目超过200项。

为了制作赛车,Williams车队设计中心必须绘制600-700张的设计图,而且必须随着比赛的进行不断对赛车进行改良及性能提升,因此一年下来大约会有1200张的设计图。

全年17场的比赛,每一场都有超过3亿5千万的观众观赏比赛。

每一部赛车在一场比赛中的汽油费用要花大约人民币23万元。

每一位车手在一场F-1比赛之后体重会减轻2公斤。

每一位车手在一场F-1比赛会消耗600卡的热量。

Williams车队工厂每一年要制造超过200,000个F-1赛车组件。

在比赛进行中车手的心跳会高达每分钟190下,而赛车驾驶舱的温度会高达摄氏50度,大部分的F-1车手会在比赛进行中以机能饮料补充水分。

Williams F-1赛车的极速超过时速200英哩,而实际的速度会因为跑道的不同而有差异。 F-1赛车引擎的最高转速可达每分钟18,000,Williams F-1赛车所用的BMW引擎更高达20,000转。

F-1车手过弯时会承受大约4个G离心力,也就是说他们的身体必须承受体重4倍的作用力。

F-1赛车使用符合大会规定的无铅汽油,耗油量大约是每一公升可跑2公里。

F-1赛车可以在7秒内从静止加速到时速200公里并且再减速到停止。

每一站的比赛每一个车队有2位车手出赛,必须准备3部赛车(其中一部是备用车),10具引擎,超过80条轮胎,17吨的备用零件及工具,45位工作人员。

每一条赛车胎的成本超过人民币5,000元。

在高温的跑道上比赛,每一位车手身体的水分大约会流失1.5公升。

F-1赛车与一般道路车辆的相似之处仅只于同样有一个方向盘、一个变速箱、四个轮胎。

以车架专集为例:

车架是汽车设计的重要课题,它几乎比引擎更重要,因为它的好坏直接关系到车的一切(操控、性能、安全、舒适........)我把手头的资料集合起来,就自己的观点把主流的车架做了一点阐述,有不尽不实之处还望大家指教!!!要评价车架设计和结构的好坏,首先应该清楚了解的是车辆在行驶时车架所要承受的各种不同的力。如果车架在某方面的韧性(stiffness )不佳,就算有再好的悬挂系统,也无法达到良好的操控表现。

而车架在实际环境下要面对4种压力。

1.负载弯曲(Vertical bending)从字面上就可以十分容易的理解这个压力,部分汽车的非悬挂重量(unsprung mass),是由车架承受的,通过轮轴传到地面。而这个压力,主要会集中在轴距的中心点。因此车架底部的纵梁和横梁(member),一般都要求较强的刚度。

2.非水平扭动(longitudinal torsion)当前后对角车轮遇到道路上的不平而滚动,车架的梁柱便要承受这个纵向扭曲压力(longltudinal torsion),情况就好象要你将一块塑料片扭曲成螺旋形一样。

3.横向弯曲(lateral bending)所谓横向弯曲,就是汽车在入弯时重量的惯性(即离心力)会使车身产生向弯外甩的倾向,而轮胎的抓着力会和路面形成反作用力,两股相对的压力将车架横向扭曲。

4.水平菱形扭动(horizontal lozenging)因为车辆在行驶时,每个车轮因为路面和行驶情况的不同,(路面的铺设情况、凹凸起伏、障碍物及进出弯角等等)每个车轮会承受不同的阻力和牵引力,这可以使车架在水平方向上产生推拉以至变形,这种情况就好象将一个长方形拉扯成一个菱形一样。其实车架的好坏并非物理指标就可以涵盖,所以即使有超强的新车架出现,最传统的车架形式依然存在,正因为此,以下的内容才有了发布的意义。

Ladder Chassis(梯形车架)梯形车架还有一个更为人熟知的名称—阵式车架,是最早出现的车架形式。顾名思义,梯形车架的样子就好象一条平躺着的梯子由两条纵向的主粱(longitudinal side member),结合许多大小(粗细)不同的副横梁(cross member)所构成的,有些情况还会加上斜梁(cross braces)作巩固。直到上世纪60年代,它仍然被大部分汽车所采用。随着不同形式的车架设计的诞生,梯形车架应用到一般小轿车上的情况越来越少见,(简直是罕见!)除了专门的越野车,如Jimmy、Landcrusier或者Trooper等,现在只有商用车才使用梯形车架。越野车使用梯形车架主要是看中它车身和底盘分离的设计,车架和车壳作非固定连接,在越野行走的时候,崎岖的大幅路面上下落差环境,会导致车架的大幅扭动,如果是一体式车架的话,很有可能随时扭到连车厂都不认得这是自己造的车!!!梯形车架的非水平扭曲刚性其实并不理想,一样会产生大幅的扭动,分离式车身正好阻止了车壳的扭动。另外这种车架的前向抗曲能力(即对抗前方正面撞击力的能力)非常的强!所以这款车架仍被越野车普遍的使用。至于商用车由于梯

形车架的负载抗曲能力高,而车架先天造就平台造型,无论对营造车厢空间还是栽货空间都有极其正面的作用。梯形车架的优点也造就了它的缺点,平面结构令它的非水平扭曲刚性相对于一体式车架来的低,而车架的设计不善于造就重心水平低的汽车(技术上完全可行,但是没有必要)对于以操控性作为出发点的汽车这种特性当然与他们的宗旨背道而驰。

Monocoque(一体式金属车架)顾名思义,使用一体式车架的汽车,整个车身的外壳本事就属于车架的一部分。所以它不同于传统的梯形车架或者管式车架,需要在车架外包裹外壳。事实上,按严格的定义来说,一体式车架都是由不同的组件装嵌而成的,其中最大的一块就是地台,其余的如车顶、侧板大小各异,所有的板件都是由高压压模机压制出来的,利用机械臂做电焊处理,有的甚至使用激光焊接技术。整个制作过程短至数分钟便可宣告完成。由此可见,一体式车架之所以那么流行,主要原因是为了适应高度机械化的流水生产作业大量生产,这样做可以大大的降低生产成本。而且一体式车架先天拥有良好的撞击保护能力,车头以及车尾加装副车架一方面有利于吸收撞击所造成的冲击力,另一方面对车架行驶的刚性也有所帮助。其次,一体式车架能够预留用以吸收撞击能量的褶皱区外,车架本身的包裹式构造还可以将褶皱区域吸收不完的能力经过车柱分散到车体的其余部分,避免猛烈撞击力在瞬间过于集中而对乘客造成严重的创伤!相对于其他的车架构造,一体式车架没有高而阔的门榄、防滑动支撑架和大型的传动轴管道等,空间的利用率极高。凡事总有正反两面,一体式车架生产前的配套投资极其庞大,绝对不适合小批量生产。比如市场层面较窄的跑车市场,现在只有PORSCHE使用一体式车架。另外一个明显的缺陷就是一体式车架因为使用大量的金属,重量偏高。外壳的作用主要是用来营造理想的空间效果,而车架的设计主要由金属钢片构成,虽然钢片已经作了开坑的加强韧度处理,但是在物理结构上的刚度,特别是非水平扭动(longitudinal torsion),始终不及钢管式车架。如果以重量和刚性比来作比较的话,使用同等金属重量所制作出来的一体式车架是所有车架中刚性表现最不济的。顺便可以提一下的就是车架的后天改装问题。坊间流行为汽车加Bar也不是一天两天了,但是无论是顶塔或者底塔,增加的只是车体上部分空间结构的刚性,但是车体其他部分的抗扭度依然没有丝毫的提高,也就是说,原来过弯时,整个车架的扭动现在被车架中间部分的扭动代替了。所以Tower Bar及其量只能提高驾驶的感受,至于真正的车架刚性的表现则很难说。但是有一种情况是例外的,那就是原厂在设计时已经考量了车架的longitudinal torsion,加装tower bar已经是设计的一部分。

ULSAB Monocoque(超轻量一体式车架)既然ULSAB Monocoque可以单独被罗列出来,自然有其独到之处。不过首先还是要交代一下它的出生。传统的一体式车架其优点是对于大量生产成本相对较低,拥有较强的空间效能同时撞击保护能力较强。缺点是车身沉重,初期投入很高,无法做少量生产。在上世纪八、九十年代开始,国际汽车的安全规格开始迅猛的发展,各大车厂除了发展不同形式的主/被动安全设备以外,也开始着手于设计撞击刚性更高的车架。虽然当时超级计算机已经可以辅助设计出理想的车身结构,但是也无可避免的使更多的钢材被应用到车身上,使得车架重量进一步增加。制造商为了兼顾汽车的性能和环保表现,则着手研究别类的车架金属的应用,希望借此克服传统一体式车架重量偏高的缺点。最为人所知的HONDA NSX 和 AUDI A8就是在那样的大环境下开始使用全铝合金一体式车架的。而更多的车厂在使用部分的铝合金零件(如汽缸体、副车架、车身结构板块、和悬挂摇臂等)来取代传统的钢制零件。这对于许多钢铁制造商来说无疑是沉重的打击,如果汽车工业越来越趋向于使用铝金属的话,他们的生意以及赢利必然会受到重大的影响。为了避免更多的车厂选用铝而放弃钢铁,一间美国钢铁制造商,委托了PORSCHE ENGINEERING SERVICES研发了新型的钢制轻量车架技术,成为了今天的超轻量一体式车架(Ultra Light Steel Auto Body)。这也是为什么PORSCHE会选用一体式车架的原因之一。在结构上,它与传统的一体式车架无异。轻量化的主要原因是车的板块由Hydroform形式压制,简单的讲就是以高水压压制。传统车架用高重量压模机压制的车架模块,效果就好象用纸盖着硬币,然后用铅笔素出图案的效果。车架和车壳的板块因为压模机的压制细腻度有所规限,整体厚度和设计的厚度有一定的出入,尤其在弯角和边缘的位置,在压制后肯定是最薄弱的地方。为了弥补这个缺陷,整个车架在压制时会刻意做的厚一点,

就是说用厚一点的钢板去迁就这些最薄弱的位置都符合最低的厚度要求,从而达到刚度要求。Hydroform利用极高的水压,将钢材压迫成所需的车架形状。因为水的压力是平均的,不同的地方所受的压力同样是相同。这样就解决了车架冲压受力不均的问题,车架便可以造得更薄了。ULSAB在98年公布了一份申明,Porsche Engineering Services声称它比传统的一体式车架轻36%,而刚性则提高了50%。现在BMW 3系和 OPEL ASTRA的部分车架都使用这个技术。

Carbon-fiber monocoque(一体式碳纤维车架)想解释清楚这种车架,就必须首先解释一下碳纤维的构造和特性。关于碳纤维这个词,大多是从赛车报道中首先遇到的。现在的F1赛车身上90%为合成物料,而这些合成物料中90%就是碳纤维!不过非常有趣的是,虽然F1赛车上的这些碳纤维部件超级的昂贵,不过其实它和我们身上所穿的化纤衬衫(Rayon shirt)有着相同的渊源。现在这个世界上有两种物质可以制造碳纤维,其中一种就是人造丝(Rayon)。Rayon是一种丝质的人造纤维,由纤维素(cellulose)所构成,而cellulose是构成植物主要组成部分的有机化合物。另外一种能制造碳纤维的物质是丙烯酸纤维(Acrylic fiber),学名应该是Polyacronitrile(PAN)。制作碳纤维的方式会因生产商的不同而稍有不同。以McLaren

F1赛车为例,车上的碳纤维板件的制作过程大致是先将人造丝或者丙烯纤维放在热框架上加热到摄氏250度,然后再以摄氏2600度在铁炉内加热,使之炭化为碳(Carbon)以及石墨(graphite)。炭化后的纤维会以每三千条微丝卷成一条0.1mm粗的细丝,并以之编织成网状图案,成为碳纤维布(碳纤维板的高强度就得意于这种单纤维整齐排列、紧密成束的内部构造)但是如果碳纤维布不再进行进一步加工,在室温环境下只有约三天的寿命,故此这种碳纤维布一般存放在零下18度的冷柜里,这样寿命可以延长到18个月。碳纤维布之所以不马上加工成为碳纤维板,是因为车身的不同部件对碳纤维板的性质要求略有不同,有些碳纤维板用于车身结构上直接受力,而有些则用在阻流器上,有些则要经过特别的耐高温处理。(其实碳纤维板已经比普通的钢材耐高温,而且在一定的温度范围了,随着温度的上升,它的强度会逐渐的增大。一般钢在摄氏635度就会软化,当温度进一步上升到摄氏1400度,钢材就会开始融化,而碳纤维材料却在摄氏20~2000度之间都保持持续的强度上升。)一般加工碳纤维板,都要将板件在模具中成型时加入合成树脂(resin)。而不同的板件性质就是由与加入不同的合成树脂所造成的。加工碳纤维板的工作方法虽然有多种,但是基本工序都一样,都是将碳纤维布放置在加工模型的铝制模具中,将适合的合成树脂涂满碳纤维布,然后放到熔炉中以不同的温度、时间和压力溶制,令碳纤维融合,成为坚韧的碳纤维板件。世界上有大小不同的碳纤维制造商,而专为汽车制造的碳纤维普遍只有几种,当中以高韧度和重量比例见长的一种叫作Kelvar。Kelvar由著名的杜邦化工开发的,用途主要是汽车、赛车乃至飞行员的头盔。总的来说,碳纤维和传统钢材比较,其性能具有压倒性的优势,密度要比钢材低4倍左右,而强度和硬度都是钢材的两倍。但是其实碳纤维也非完美的材料,虽然它很坚韧,但是却有受力向度的问题,也即是说,整体中的某些部位不太能受力。碳纤维应用于汽车是80年代初的事,当时的FIA允许Group B赛车使用任何汽车技术于赛车之上,唯一的限制是有关的赛车必须生产200辆民用版本公开发售,以次作为推动汽车发展的动力,同时也限制了过于离奇的技术所造成的不公平竞争。于是在那时,陆续出现了许多使用碳纤维部件的跑车,例如Ferrari 288 GTO PORSCHE 959,不过当时碳纤维的使用仅仅用于车身的板件,而目的也仅仅限于减轻赛车的重量,碳纤维板本身根本没有提供任何的车身刚性。更别说一体式碳纤维车架了,当时的959使用的是一体金属车架,而288GTO、F40、DIABLO使用的都是钢管式车架。最早出现的一体式碳纤维车架不难猜出是出自于F1赛场,1981年McLaren MP4/1的设计师John Barnard设计了全世界第一个一体式碳纤维车架,而在超级跑车的行列中现在应该只有4辆使用的是一体式碳纤维车架。它们分别是McLaren F1 Ferrari F50 Ferrari Enzo Bugatti EB 110SS(EB 110 GT不是使用一体式碳纤维车架的)。而其他声称使用碳纤维的跑车最多不过在车架补强方面使用碳纤维,更多的是使用在装饰部分上。在结构上,一体式碳纤维车架没有即定的格局,几乎每辆车都根据自己整体的情况特别设计车架,其中值得一提的F50,F50的车架有一个很大的特色,就是后悬挂直接连接在引擎及变速箱上,然后才将整个引擎悬挂结构嵌入车体内。籍此F50的车架只重102kg,而抗扭度高达没有人性的3550kgm/degree。这种设计可以营造极轻量的悬挂重量,但是无可避免的回有较大的引擎震荡传入车厢。碳纤维的制作成本已经从数

年前的100美元/公斤下降到了约5美元/公斤,可见只要解决批量生产的问题(碳纤维的铸造主要依赖手工,属于劳动密集型生产)碳纤维很快就会被使用于民用汽车。

Aluminum Space-frame(铝管式车架)89年面市的NSX十分明显的是一体式的结构,只是车架的材料由铝取代了传统的钢材。虽然HONDA和AUDI为了谁是最早采用全铝制车架的车厂至今纠缠不清,不过这也许并不重要,所以也没有必要在这里讨论。其实铝管车架也有多种形式,所以我就挑两种最具代表性的形式加以介绍。AUDI SPACE FRAME(ASF)上一代A8在94年推出,重点技术便是和美国制铝商Alcoa合作开发的铝管式车架。虽然从名字看铝管车架更似钢管车架,不过,铝管车架并没有像钢管车架般用交错的钢管支撑车身的结构,而是和一体式车架极其相似, 。以A8和A2为例,它们的ASF车架结构在外型上基本是一体式的构造,车架本身已经勾勒了车身的线条,与一体式车架稍有不同的是少了一些一体压制的车身板件,取而代之的是增加大量的管状结构分布,如果足够仔细的观察A8的车架图,不难发现这一点。ASF的制造成本不低,主要是模件压制的机器和水压模制技术的投资,焊接技术所投放的资金也是原因之一。但是铝制车架一方面更轻量化,一方面防锈;同时铝材几乎可以全部回收再利用,这无疑具有重大的环保意义,就这三点ASF已经具备足够的存在意义。根据AUDI公布的数据,使用ASF的A8比使用传统一体式钢制车架的车辆能减轻高达40%的车架重量,与此同时整体车架的刚度也有40%的增加。ASF已经进入了第二代的技术,车架的部件全部由高刚韧度铝合金以高压吸塑、真空整裁或片状构成制造,并以小钢钉以非单一的焊接方式焊接而成。比起上一代的A8车架,新技术尽量使用大一点的框架,减少框架内使用铝管的数量,相对也可以节省焊接的焊接点与时间。在焊接技术上也增加了激光的使用范围,虽然成本已较第一代有所下降,可是工序与技术始终同样复杂,所以成本始终较普通的一体式车架高出很多。但是毫无疑问,只要能够大量的生产,尽量降低成本,ASF铝管车架是很好的车架设计。Lotus Aluminum Chassis对于产量偏低的莲话车厂来说,搞铝车架搞到像AUDI ASF这样的层面是不现实的,因为在成本上这完全超越了车厂的承受范围。但是轻量化始终是LOTUS的灵魂,所以车厂求助于丹麦铝窗制造商Hydro Aluminum,希望凭借该厂对铝材性能的了解,能降低成本制造轻量化同时坚固无比的跑车车架。ELISE身上革命性的铝制车架,利用挤压方式(Extrusion)将车架模件挤压成型,不过它最正点的地方在于Hydro aluminum发现,只要在铝件接合面上做化学处理,便可以用环氧树脂(Epoxy)将铝件刚硬的结合起来,而且使用在这个车架上的环氧树脂也是特别发展出来的,坚固度高的出奇。配合钢钉固定,使整个车架的抗扭曲度高达没有人性的1122kgm/degree也就是说,要使车架扭曲1度,用一根一米长的杠杆以1122kg的力量扭动下去!!!!!并且据原厂修理ELISE的技师称,即使经过撞击而车架扭曲的ELISE也没有一处结合环氧树脂的地方崩断。不过使用环氧树脂的意义还不止于此,另一个重点在于,能够避免以焊接方式接合铝件,好处是可以用上薄一点的铝材,这样可以进一步的减低车架的重量,因为焊接的接点往往是车架最薄弱的地方,要解决这个问题,就不得不使用厚一点的铝材作弥补。所以,同样使用铝管车架设计的Renault Sport Spider,以焊接方式接合车架,但在重量、抗扭曲度和挤压厚度的表现上都及不上ELISE。ELISE SPORT SPIDER车架重量 65kg 80kg抗扭曲度 11000Nu/degree 10000Nu/degree挤压厚度 1.5mm 3.0mm从赛车的角度看,ELISE的铝管车架是优质而有创见的。然而,一个以碳纤维制造的(撞击盒)已经预设在车头部分,作用是用以减轻前方撞击时的损毁程度,但是这个车架设计却不善于吸收撞击能量,车架一旦撞击扭曲,维修费用都会高的惊人,同时修复工作也非常的复杂,因而往往令它不被修理就直接报销。另一方面,有一个广为人知的事实就是,铝金属在受热到一定的程度后就会开始燃烧。如果引擎有漏油情况的话,点起轻微的火舌,而一旦发现的稍迟后肢车上没有灭火器的话,加上纤维车身助燃,火势随时一触即发,烧到连渣都不剩。所以用铝制车架的车内最好常备一只灭火器。至于AUDI ASF的身上有没有这样的隐患,或者在车架设计时已经克服了这样的问题,暂时我也没有足够的资料下定论。

Glass-fiber body(玻璃纤维车架)也许很多人没有听说过玻璃纤维车架,其实这个世界上也只有一辆车使用过玻璃纤维车架,不过,玻璃纤维大量的被运用到汽车上是不争的事实,所以就当追忆古人,在这里谈

一谈玻璃纤维车架。对不少的汽车界专业人士而言,玻璃纤维是极其理想的制车材料。它比钢甚至铝更轻巧,可塑性高,也不需要担心生锈的问题。而且它的加工成本极低,最简陋的一些基本工具加一双手就可以制作玻璃纤维了。我不知道该说玻璃纤维有英国情节还是应该反过来说英国跑车有玻璃纤维情节,反正它们有着纠缠不清的种种关系。而和玻璃纤维最投机的要属命运多舛的LOTUS。直到今时今日ELISE和ESPRIT的车身仍然披着玻璃纤维的外衣。而第一部使用玻璃纤维车架和车身的汽车也出产于LOTUS。不错又是它—莲花,正是它于1957年推出了一体式玻璃纤维车架(Glass-Fiber Monocoque Chassis)轻量化跑车Elite。Elite的全车受力结构均有玻璃纤维制造,在当时而言,超前的概念就象今日的一体式碳纤维车架一般。无论引擎、传动系统以至悬挂的固定位置,都完全的嵌入玻璃纤维车架之中,结果车重是惊人的660kg。可是Elite注定只是一颗流星。这点大家其实不难理解,引擎、悬架和传动系统这些不断受压摇晃的部件,对车架接点的要求是极其苛刻的。而玻璃纤维却有着很大的先天物理宽容性,车身板件与板件的夹位不能造的精密,对机械受力的问题上一直都存在隐忧,夹位会随着时间的推移越变越大,最终影响行驶的稳定性、乘坐的舒适性和安全性………LOTUS于59-63先后4年间不断加大用以维护Elite车架稳定性的资源投入。最后在生产了988辆之后终告停产,所谓的第一辆使用玻璃纤维车架的汽车也成为了最后一辆!以后使用玻璃纤维的汽车无论是Elan Marcos Corvette或者稀有的Venturi都只限于非受力的车壳部分。换句话说玻璃纤维只是美丽的外衣而已……..那些跑车在国内都太罕见,其实有些普通的汽车车身就是用玻璃纤维制造的,比如上一代的Renault Espace。这车在国内曾经少量的CDK生产,能见度还可以。我曾经和一位Espace的车主在修理厂聊天。猜猜看他如何评价玻璃纤维的外壳,“漂亮、耐用、不生锈?”都不是!他说:“车壳一撞就爆,不能修只能大幅更换,贵死了……….”

参考文献:

更多推荐

车架,使用,碳纤维,赛车,设计,结构,重量,汽车