2024年1月10日发(作者:电动车品牌排行)
中国地质大学长城学院
本 科 毕 业 论 文
题目
关于长城公司品质治理岗位的
实习报告
系 别 经济系
专 业 会计学
学生姓名 孙亚
学 号 013131119
指导教师 高祥
职 称 讲师
实习时间 2016.10.15—2017.2.28
2017年 4 月 30日
摘 要
在马上毕业的尾声,马上进入社会的阶段,学校给予了我们顶岗实习的机会,毕业实习是每个大学生一定拥有的一段经历,实习能使我们在实践中了解社会,开拓视野,增长见识。为了毕业后能够尽快的融入社会,能够胜任企业的工作,于是我怀着激动的心情来到长城公司开始为期三个月的顶岗实习,将在学校所学知识运用到实际工作中,了解自己的主要工作和任务,能够独立完成自己的本职工作,在规范有序的工作中培养吃苦耐劳、坚持不懈的精神。
关键词 顶岗实习; 长城汽车; 实践能力
ABSTRACT
At the end of the graduates, is about to enter the stage of the society, the school gave us the
opportunity to field work, graduation practice is every college students must have an experience, practice
can make us understand society in practice, widen our sight and enrich their knowledge. In order to
graduate as soon as possible into the society, can be competent the job of the enterprise, so I went to the
Great Wall company with aflame mood in the first three months of field work, to apply what they have
learned in school knowledge in practical work, understand their main tasks and responsibilities, able to
independently own labor of duty, in a standard and orderly work bears hardships and stands hard work,
perseverance.
Keywords Field work; Great Wall motor; Practice ability
目 录
1.前 言 .................................................................................................................................... 0
2.公司概况 .............................................................................................................................. 0
2.1企业简介 ................................................................................................................... 0
2.2企业文化 ................................................................................................................... 0
2.3廉洁长城 ................................................................................................................... 0
3.实习目的 .............................................................................................................................. 1
4.实习工作 .............................................................................................................................. 1
4.1岗前培训 ................................................................................................................... 1
4.1.1厂部安全教育的主要内容 ........................................................................... 1
4.1.2车间安全教育的主要内容 ........................................................................... 1
4.1.3班组安全教育的主要内容 ........................................................................... 1
4.2在岗作业 ................................................................................................................... 1
4.3实习经历 ................................................................................................................... 2
5.员工成长 .............................................................................................................................. 3
5.1人才观 ....................................................................................................................... 3
5.2人才培养理念 ........................................................................................................... 4
6.心得体会 .............................................................................................................................. 4
6.1自身受益 ................................................................................................................... 4
6.2不足与努力方向 ....................................................................................................... 5
6.3对自己的要求 ........................................................................................................... 6
参考文献 ................................................................................................................................. 7
致 谢 ....................................................................................................................................... 8
1.前 言
时间飞逝,转眼间大学四年的时间就要过去,现在马上面临毕业,实习是一个很好的锻炼机会,是把理论知识与实际相结合起来的途径。作为大学生活的最终一课,实习必不可少,实习让我逐渐把学到的理论知识与实际工作中遇到的问题相结合,让我慢慢褪去了学生的稚嫩浮躁逐渐成熟,让我体验了生活的艰辛与不易。与此同时,实习也使得我向社会迈出了重要的第一步。实习让我们增长知识,开拓视野,积存经验。三个月的实习令我受益匪浅,现在我将就对三个月的实习做一个工作小结。
2.公司概况
2.1企业简介
长城汽车成立于1984年,是中国汽车品牌。长城汽车是中国最大的SUV制造企业,是一家A+H股上市公司。目前,旗下拥有长城、哈弗、WEY三个品牌,产品涵盖SUV、轿车、皮卡三大品类,具备发动机、变速器等核心零部件的自主配套能力,下属控股子公司50余家,员工近7万人。
公司在国际、国内两个市场一直保持着领先优势。哈弗SUV已连续13年保持了全国销量第一,成为SUV的领导者品牌;长城皮卡已连续18年在全国保持了市场占有率、销量第一。
2.2企业文化
核心文化—每天进步一点点
核心价值观—诚信、责任、进展、共享
长城精神—团队精神
长城作风—稳健务实
公司愿景—中国造长城车 享誉全世界
核心价值观—诚信 责任 进展 共享
2.3廉洁长城
廉洁体系制度是为规范员工廉洁行为,与事业伙伴实现公正双赢,实现公正、公正、简洁、透明的工作环境,弘扬优秀企业文化,树立良好的企业形象,坚决打击各种形式腐败,共同维护生存平台,依据国家相关法律法规制定的廉洁体系制度。
廉洁,营造公正公正的进展平台,让你凭能力获得个人成功和社会肯定;廉洁,致力打造简洁、健康的上下级关系,让你不用为送礼破费、发愁;倡导减负降压,同事结婚随礼限额100元,过满月、搬家等事宜也提倡节俭;廉洁,使对内对外的敏感事宜透明化,做到预防、爱护员工在前,惩治腐败在后。多年来,长城汽车始终秉承“零容忍”的态度,打击各种腐败,以营造公正公正、简洁透明的工作环境以及相关方合作环境为宗旨,肩负“为员工制造幸福、为客户制造价值、为社会制造效益”的企业使命,与全体员工、 合作方共同建立廉洁诚信生存进展平台。
3.实习目的
企业实践实习是理论与实践相结合的方式,是提高学生动手操作的阶段,为培养有理想、有道德、有文化、有纪律的“四有”青年奠定了基础,实习可以锻炼自己,把理论知识实践化,我们可以通过实习了解实务,巩固所学理论知识,提高分析问题解决问题的能力。缩短与社会接壤的距离,了解和掌握工作中需要的技能,提高就业几率,为今后就业融入社会打下坚实的基础。
社会在快速的进展,这是一个优胜劣汰的时代,企业会留下优秀的人才,为了毕业后能够顺利的参加工作,我院开展了顶岗实习活动,给予实习机会,为了尽早与社会接轨,把理论知识转化为实际操作。另一方面,顶岗实习体验生活不错的选择,于是我怀着十分激动的心情踏上了实习的路程。
4.实习工作
4.1岗前培训
我被分到了品质治理部,品质治理部分为品质检验科,品质保证科,品质治理科 。首先进行三级安全培训
4.1.1厂部安全教育的主要内容
“安全第一”,安全是一切工作的入口,没有了安全其他的一切都没有意义。企业给我们培训了八大损害:卷压挤入伤、重物砸伤、车辆碰撞、高空坠落、触电损害、高温烫伤、切割损害、火灾损害。这些损害对于我们来说都是致命的,为了保证我们的安全我们要做到:正确穿戴劳保且要穿全;按照操作要领书行为规范;多人协作必有一名指挥员;当设备出现问题时我们要停止、呼叫、等待。使其新入厂的职工树立起“安全第一”和“安全生产人人有责”的观念。
介绍企业的安全概况,包括企业安全工作进展史,企业生产特点,工厂设备分布情况,工厂安全生产的组织机构,工厂的主要安全生产规章制度等。
4.1.2车间安全教育的主要内容
介绍车间的情况。如车间生产的产品、工艺流程及车间人员结构安全生产组织状况及活动情况,车间危险区域、有毒有害工种情况,车间劳保爱护方面的规章制度和对劳动爱护用品的穿戴要求和注意事项。
4.1.3班组安全教育的主要内容
本班组的生产特点、作业环境、危险区域、消防设施等等。重点介绍高温高压、易燃易爆、腐蚀、高空作业等方面可能导致发生事故。进行安全操作示范。组织技术熟练、富有经验的老员工进行安全操作示范。
4.2在岗作业
期初,刚进入工作岗位的时候,一切对于我来说都是比较陌生的,曼德生产的主要线束有:车身线束总成、前舱线束总成、车架线束总成、空调线束、内饰顶灯线束、底盘线束和发动机线束等。先了解,班组长安排我熟悉作业手顺书,是检验工作的理论知识。然后通过检验员资格证的考试,正式上岗。负责新车型哈弗H2S线束的质量检验,在班组长和同事们的带领下,逐渐熟悉工作环境,主要工作是负责检验线束的品质,是否符合标准,比如固定钩安装角度公差在45度范围之内,固定钩安装程度即管卡固定后不可以左右移动,其余固定钩在任何方向都不可以转动或移动。护板外观良好、无破损、变形、上下护板扣合处不可缠绕胶带,护板内部线缆最高点不得高于护板边缘。图纸是检验工作的标准,根据图纸
来检验线束的长度、扎带类型、扎带方向、胶带缠绕方式是否合格,记录产品的名称批次检验日期以及编号,便利日后出问题追究责任。若不合格,填写质量反馈表说明问题,记录名称、批次、哪里出了问题,发觉人,反馈给供应商处以罚款,这样供应商可以引以为戒,生产出合格的线束。如果合格所有的线束检验合格后,才可以组装汽车,不耽搁组装,节省时间,进而节省成本,时间就是金钱的体现。
“轮岗制度”即岗位轮换,定期轮岗是在一个岗位上工作一段时间后轮到另一岗位去工作。员工可以熟悉每个工作岗位,满足职位空缺时的需要,能够更好的完成工作,使自身的技能得以提高。与会计专业的轮岗制度是相通的。
4.3实习经历
晨会,新的一天都会从口号“科学提品质,聚焦铸品牌”开始,领导每天早上都会带领员工喊出响亮口号以振作精神
随后宣读一下当天的工作任务与作业中出现的问题,之后领导提出每个员工依次开早会的要求,锻炼大家勇于讲话的能力,记得第一次站在大家面前面对大家讲话的时候,有些拘谨,说话吞吞吐吐,但是看到同事以及领导那样专注的听我说话,于是慢慢自信起来,下次开晨会就不会再紧张了。会议内容结束后还要宣读一会日常行为规范以规范日常行为举止。做一名合格的检验员质检员要做到以下几点:1、一定要有一定的专业技术水平。 2.质检员一定要有较高的质量意识。
3.质检员应养成好学的习惯,善于分析总结,持续改进。4.质检员要具备现场发觉问题的敏锐眼力。5.质检员要有治理质量的手段和处理问题的能力。质检员对质量治理要有预控手段、过程控制手段,这是做质检员的关键。6.质检员一定要专注的工作态度,很强的执行力。7
质检员要坚持原则,要有勤恳的工作态度。8质检员要善于团结同志,处理好人际关系。
检验员对外包的线束进行严格检验,合格后才可以流出企业。刚开始的工作量还是比较小的,伴随着旺季的来临需求量越来越大,由刚开始的一百四十套涨到了五百套,留下来加班是必定的,刚开始不适应
但是看到同事们没有懈怠没有抱怨依旧紧张的进行作业,自己也很受启发,既然改变不了环境就要改变自己的心情,慢慢习惯。
公司每个月都会要求员工上交一份创意功夫,是员工节省成本或节省工时的想法的体现,
要求员工勤于思考勤于发觉作业中存在的浪费成本或浪费时间的弊端,比如点检表,每天开始作业的第一件事即检查量检工具是否齐全,如果一名员工点检后签字,而另一位员工在不知道已被点检的情况下重复该过程,浪费些时间。于是
员工提出将点检表悬挂于明显位置,大家一目了然,该想法得到领导的认可,加以实施。
检验员每天都会根据发货量发货型号来确定去检验某种型号的线束以不影响发货,每次要统计型号数量,浪费时间有的时候是供应不上发货的,之后开启了新模式,每个检验员负责检验固定的线束,中间节省了换图纸的过程,节省时间提高效率。这也是创意功夫的体现。每一种型号的线束都有对应的图纸,检验的时候要严格按照图纸一一检查,按照图纸上代称,距离,测量线束的尺寸是否合格。线束种类很多图纸种类多,每次找图纸也需要一定的时间,于是有同事提出新创意,制作每个型号线束的标准样线,检验的时候拿被检验线束照对标准样线即可。这个想法得到领导认可得以实施。我们的原则是节省一切可以节省的时间。提高效率。
每个月都会对检验基本知识进行总结考试,比如图纸代称,A表示黑色PVC全缠,B表示黑色PVC花缠,C表示黑色PVC点缠,R代表黑色绒布胶带全缠,E代表耐磨布基胶带全缠,AY代表黄色PVC胶带全缠,S代表海绵,B代表塑料布,T代表袖套,L代表铝箔胶带。如果可以将这些代称熟练掌握,作业时只看到图纸上的字母即可反应出线束的合格与否,很大程度的节省时间,考试成绩作为绩效依据,调动了员工的好学性,也巩固了品质检验的基本知识。
公司的效益离不开每名员工的努力,公司为每一位员工考虑。公司会加以奖励购物卡,生活用品等等。员工的心理上会得到很大的满足。长城鼓舞拾金不昧的行为,无论捡到身份证等证件还是现金钱包,公司都会通报表扬,继承了中华民族的传统美德。
长城是一个大家庭,家人有难,一名生管物流部的女同事家庭压力重重,上有老下有小
年迈的父母因为意外事故需要大笔的医疗费用,公司组织捐款活动,帮这位家人共渡难关。同事们纷纷伸出援助之手,长城自有真情在,自己也被感动了,积极捐款,奉献自己的微薄之力。
在实习期间,我从不迟到早退无故请假,保持良好的出勤记录。工作时间从不懒散懈怠,确保质量完成工作任务。
5.员工成长
5.1人才观
长城汽车视人才为第一生产力,以全球的视野认识人才,以开放的心态引进人才,以尊敬的
精神用好人才,以人才领先助推事业领先,最大程度发挥人才价值。
5.2人才培养理念
长城汽车围绕人才强企的战略举措,秉承“造车先育人”的人才培养理念,实施不计成本的人才培养。
公司定期进行课程开发与修订,满足员工能力提升和企业进展需求。公司依照“自主培养、大胆提拔、人尽其才、才尽其用”的用人策略,设计职务与专业相符合的职业进展通道,促进员工找到适合自己的进展方向,帮助员工快速进步!
6.心得体会
6.1自身受益
三个月的时间很快过去了,有很多在学校没有过的经历,实习生活对我的影响很大,主要体现在以下几点:
第一, 实践能力方面
在学校我们更侧重于学习书本上的知识,通过一些理论考核,认为分数高就掌握了所学知识,然而实际上远远不够。我们带着这些理论知识去企业上班是不能胜任工作的。比如刚开始虽然知道线束干线支线长度的误差范围,从业考试也能答正确,但是当我们遇到一根多条支线的线束难免会记混,需要我们多操作多检验,在实践中掌握知识。实习给予了我们动手实践的机会,俗话说“实践出真知”我们在实践中犯了错误,在师傅的教导加以改正,我们实践能力慢慢的会有所提升。
第二,处理问题方面
在校期间我们遇到一些学习上的问题,老师,授业解惑,在老师的教导下很简洁的解决学术上的问题。生活上也会跟室友一起商量解决问题的方法。当我们参加工作时问题百出,主管鼓舞我们自己研究自己找出解决问题的方法,比如固定钩松动,如果每次找售后明显浪费时间,可以自己动手操作牢固固定钩,节省了一定的时间。标准样线是我们检验被检线束的标准,我们要把样线用胶带固定,不能因为松动而影响检验结果。慢慢的自己也可以独立的解决一些问题。
第三,自信念和责任心方面
刚进入实习单位,没有任何经验觉得自己什么都不会做,自己接受新东西也比较慢,看着同事们那样熟练心里很自卑,慢慢的在班组长的耐烦教导下逐渐熟练,直到能独立做好自己的本职工作,也变得自信起来。轮流到自己开早会时比较拘束,说话吞吞吐吐,也很害怕自己开早会,但是看到班组长同事们那样专注的听着我开早会,久而久之自信起来。
刚开始可能跟不上工作节奏,下班前时间紧迫,有的时候不能完成自己的工作任务,应该对自己的本职工作负责,自愿加班把工作进度完成,不影响当天发货,对自己的工作专注负责。
第四,创新能力和参加竞争
创新是一个企业进展的灵魂,创新可以提高效率降低成本,企业鼓舞员工创新并落实到实际行动中,要求每个月上交一份创意功夫,写出自己能够提高动作效率的想法,如果能够被领导采纳会给予该员工正激励。我每次都会把自己的创意想法上交,曾几次被退回来不被采纳。慢慢的熟悉工作发觉工作中的浪费情况,比如每天上班前为了能保证工作顺利进行,都会对自己的检验工具进行点检,并在点检表签字,一位同事点检签字后我在不知道的情况下又进行了点检,签字的时候发觉工作重复了,于是写把点检表悬挂于工作台,大家一目了然今天的点检工作是否已进行,得到了采纳。遇到的问题越多,发觉的问题越多,创新的想法也会越多。
这是一个竞争激烈的社会,适者生存,我们只有比别人优秀才能立足于社会,竞争可以超越自我,激发潜能,竞争的意义不是战胜别人而是共同进步。每天进步一点点,我们每天都要有所学习有所进步,哪怕只是记住了一个符号的代称,今天比昨天就优秀。社会在进步,这是一个优胜劣汰的时代,我们要比别人更加优秀才可以立足于社会。
第五,吃苦耐劳能力和自我反省
习惯了在校的自由支配时间,忽然去实习单位工作一整天不习惯不适应,曾几次都想过放弃,安慰自己毕业参加工作也会是这样的作息时间,现在习惯一下也好,毕竟工作和学习是不一样的,很庆幸一段时间后适应了工作时间,但是又被领导安排周末加班,完全被剥夺了时间自由,看到领导没有抱怨没有懈怠地加班,于是自己也鼓足了劲儿。不要在该吃苦的年纪选择安逸,为最纯的理想,在最美的时间,尽最大的努力。
经常反省自己,是为了不再犯同样的错,经常提醒自己,是为了让自己在生活面前更好的做出抉择。反省过后,你会发觉一个新的自我,发觉自身存在的诸多问题,接着重新定位自己。
这短暂的实习时间让我受益匪浅,言语无法表达我的谢意,总之感谢保定曼德汽车配件有限公司培养我点点滴滴,单位严格的半军事化治理,良好的工作环境,紧张的工作氛围,不懈怠的工作作风中,让我们形成了良好的工作习惯。为将来参加工作也打下了基础。我将以更积极主动的工作态度,更加平稳的心态,更丰富深厚的理论知识,走上以后的工作岗位!
6.2不足与努力方向
通过顶岗实习,发觉自己在工作中的经验还是欠缺很多,需要自己改变的地方也很多。对于领导交办的任务,办事不够干练,考虑问题不够全面,虽然能基本完成领导交代的任务,但是面对困难觉得心有余而力不足。有时候处理问题条理不够清楚,过于急躁,工作中不够慎重,工作方式有待改进,要朝着沉稳做事的方向努力。比如刚开始不能服从领导安排适应周六周日加班,认为周六日本是休息时间,后来改变自己的心态,认为这是对自己的磨炼,只有比别人付出更多时间更多努力才能胜过别人。在处理问题的是时候,感觉自己还是不够冷静冷静。比如检验到不
合格品,未能积极主动去找售后解决问题。感觉自己人际关系处理得不是格外好,之后自己也在友好的与同事相处,参加部门聚餐加深感情。不要认为自己做不好而不乐于去帮助别人,要有友爱的精神。
6.3对自己的要求
针对自己工作中的遗憾与不足,我对自己提出几点要求:
第一,要有坚持不懈的精神
作为毕业生初到单位,一般都是先让我们熟悉公司的工作环境,工作岗位,工作内容,一开始都不会给我们做重要工作,只是做一些简洁的工作,比如打印复印文件等。在这段时间里很多人会觉得无所事事,感觉不能体现自己的价值,会有离职的想法,不要轻视打印凭证这些微不足道的小事,我们可以从附带的原始凭证中学到很多知识,不能急于求成。所以不要轻易放弃,慢慢的工作会越来越深入。
第二,要勤劳,任劳任怨
我们到公司去实习,先处于试用期。我们应该自己主动找一些事情来做,从小事做起,比如扫地打水等日常琐碎工作,要勤劳一些,不要怕辛苦,协助办公人员做一些力所能及的事情,整理文件装订成册等等。
第三,要虚心请教,学会总结
在工作过程中,作为一个职场新人,由于缺乏工作经验,会有很多知识不懂,不懂的东西我们就要虚心向同事请教,虚心使人进步,同事比我们任职时间长,懂得也比我们多,要真诚学习,要踏实肯干,能够举一反三。主动学习,才能在工作中成长起来。
工作中要学会总结,提高自己的能力,工作方法是靠自己不断总结的,这样可以不断提升自己。
第四,端正态度,终身学习
平时,我们不管做什么事,都要端正自己的态度,我们不能以为毕业了就完成了自己的学涯,俗话说“活到老学到老”,对于我们会计专业来说,哪一位注册会计师何尝不是毕业之后参加注会考试的。注会是最难的考试之一,要想比别人优秀就要比别人更加努力,只有付出才会有回报。我们要变得足够优秀,我们要树立终身学习的理念,跟上知识更新的步伐,比如营改增三证合一等等。
为期三个月的实习顺利结束了,但我明白:今后的工作还会遇到很多新的挑战,也可以说是机遇。只要我英勇接受,一定会有更大的收获和启发的,也只有这样才能为自己以后的工作和生活积存更多丰富的知识和宝贵的经验。
参考文献
[1] 喻凡, 林逸. 汽车系统动力学. 北京: 机械工业出版社, 2012
[2] 耿彤. 德国汽车理论. 北京:机械工业出版社 ,2011.12
[3] 韩力群. 人工神经网络理论/设计及应用. 北京: 化学工业出版社, 2007
[4] 郭孔辉. 汽车操纵动力学原理. 南京: 江苏科学技术出版社, 2011
[5] 余志生. 汽车理论. 北京: 机械工业出版社, 2011
[6] 范丽红,我国汽车金融公司进展战略分析,中国水运(学术版),2006 年12 月
[7] 孔玉蓉,中国汽车金融现状及进展对策分析,金融经济,2010 年2 月
[8] 中国汽车零部件行业进展模式研究 吉林大学 2007
[9] 方锡邦.汽车检测技术.合肥:安徽科学技术出版社 2010
[10] 张建俊.汽车检测与故障诊断技术.北京:机械工业出版社 2013
[11] 张代胜. 汽车理论. 合肥:合肥工业大学出版出版社 ,2011.10
致 谢
感谢长城学院四年来对我的辛苦培育,让我在大学这四年来学到很东西,格外经济学院为我提供了良好的学习环境,感谢领导、老师们四年来对我无微不至的关怀和指导,让我得以在这四年中学到很多有用的知识。在此,我还要感谢在班里同学和朋友,感谢你们在我遇到困难的时候帮助我,给我支持和鼓舞,谢谢你们!
格外感谢我的指导老师高老师,在本论文中给予我悉心指导,过程遇到很多困难都是他给我鼓舞与指引,使我能够克服重重困难,将实习报告完成,在此谨向高老师致以诚挚的谢意和崇高的敬意。谢谢!
感谢我的实习单位保定曼德汽车配件有限公司,让我了解了工业企业节省成本与时间的必要性,品质治理的流程。同时也有很多可敬同事和朋友也给了我很大的鼓舞与帮助,在这里请接受我诚挚的谢意。
最终衷心感谢在百忙之中抽出时间参加答辩的各位专家、教授。
中国地质大学长城学院
本科毕业论文外文资料翻译
系 别: 经济系
专 业: 会计学
姓 名: 孙亚
学 号: 013131119
2017年 4 月 30日
检查盖钣金汽车零件使用多分辨率图像融合技术
尤西比奥的来源和费利克斯Miguel lopez Trespaderne
E.T.S.工业工程师,问第59、河道、西班牙向47011
{ },trespa @ eusfue
摘要
本文提出了一种图像处理算法在线in-spection大型钣金汽车零部件。自动检查印金属板不是一项简洁的任务,因为高反光材料的性质和几乎听不清的特征缺陷被检测出来。可处理无处不在的闪烁,四个图像的每一个区是il-luminating获得从不同的方向。图像系列使用Haar小波变换融合成一个单一的图像闪烁伪特征源自哪里的消除没有丢弃突出信息。我们的研究结果清楚地表明,基于小波的融合提供了一种强大的方法来获得一个干净的形象,能够可靠地检测到的缺陷。
1介绍
高度竞争的主要目标之一,汽车行业降低成本保证质量的100%部分。然而,实现零缺陷的部分很难完成尽管年商品流程的改进。在这个框架表面缺陷的自动检测已成为一个必要的任务努力提高产品质量和产量的生产效率。
已经激发了本文需要一个自动检测技术,检测小缺陷对板料成形过程。的近impercep-tible特征缺陷和金属表面形成的高反射的性质已经阻止了早期自动技术的进展。
板料成形或冲压是一个制造过程,一张是夹紧边缘,形成腔穿孔。金属拉伸膜力量,是符合的形状和尺寸的活跃的元素按设备。
冲压是最常见的一种生产过程格外是au-to-motive部门。每天,数以百万计的零件是由冲压,从小型紧固件大型车身面板。制造技术的广泛应用是由于板料成形的技术和经济优势,提出了相对于其他生产过程如铸造、锻造或加工:按同意生产率高,用非常轻量级部件com-plex形状可以获得最终,制造部分不需要任何额外的机械加工。
尽管有这些显著的优势,众所周知,板料成形是一个复杂的技术。在车体制造,冲压操作完成后使用一个巨大的力量在一个非常短的时间内,这个过程涉及大量的参数,如材料属性、厚度、几何形状和尺寸、冲压速度、振动模式,润滑,表面光洁度和clean-ness死去。因此,在实践中,可能出现一些不可幸免的问题是最常见的一种材料的断裂时由于厚度减少复杂的部分是印成需要的形状。
骨折的幽灵是限于某些局部区域,高,近日在哪里放置在材料(双曲率,尖角,深凹…),但是视觉上很难发觉他们,因为他们并不总是character-ized开放的裂纹。通常,只有减少局部的金属板,称为变细,可能出现。局部变细,如果terminat-ed拉力陆续,最终分离或裂纹。
当发生变细时,有缺陷的零件的早期检测im-portance车体制造的关键。如果有缺陷的部分滑过去正常的质量程序和到达装配生产线,制造商将落入一个非常昂贵的失误。一旦完全组装汽车的车体,画,引入一个烘箱。那里,在高温下,材料膨胀的无法忍受的臭名昭著的裂纹的金属纤维最初被柱头。
此时,缺陷的检测是非常昂贵的,因为裂缝无法修复和没有其他选择,只能发送完整的组装和彩绘车体废料场。
目前,只有盖钣金零件在线检测方法是人类视觉检查。人类视觉检查是昂贵的,耗时的,而且易于犯错误由于检查人员的缺乏经验和疲劳。care-fully的任务检查大量的冲压件格外乏味的考虑的几乎听不清特征柱头和高反光的金属表面的性质。在一个框架产品质量主要是一个竞技的价值,有必要将自动系统在这种类型的检验流程。
存在一些困难在自动检查冲压缺陷。主要并发症是一定执行检查镀锌钢板的复杂形状的零件。由于这种材料的高反射性质,表面的均匀illumi-nation获得几乎是不可能的。
2相关工作
图像处理技术使得自动化许多目视检查任务在工业环境中尤其是在汽车行业。然而,在线
自动检查形状的金属表面尚未完成。Sev-eral解决方案已经提出了自动扫描平面反射面,但迄今为止,还没有适用于三维形状的表面。平sur-faces检查一束光照在安排发送到sur-face及其平面度使它简洁预测反射的光束将并适当收集它。在这种情况下,缺陷和缺陷对材料成为
明显的反射行为的改变。然而,冲压件等金属形状的对象是极其复杂或无法预测的路径反射光束。
几种方法可以考虑车身表面的检查,但没有人的准确性、可靠性和速度要求的工业制造线。三角测量技术,如边缘投影和结构化照明,很难使用金属表面,因为他们假定漫反射率。而且这些技术缺乏所需的灵敏度检测颈缩缺陷表面曲率的特点是一个非常小的改变。笔工具等其他方法更准确,他们同意精确定量charac-terization这种类型的缺陷,但他们的测量过程极其缓慢被用于生产线。conoscop-ic全息术等其他技术基于干涉法成功应用纳米技术的周密组件的检查但他们太敏感,恶劣的环境中出现在汽车冲压生产线。
由于缺乏可行的在线检测方法的车身部分,这一任务主要是由操作员完成。旨在克服上述困难,本研究提出了一个计算机视觉系统,使用一个图像融合算法检测上的裂缝和颈缩缺陷部分。
图像融合算法同意集成一系列的图像产生compo-site形象将继承从单个图像最重要的特征。用于融合的系列可以从多通道成像传感器或来自同一imag-ing传感器在不同的时间。
在我们的例子中,我们只采纳CCD相机猎取四个面积相同但每个图像获得的图像在一个不同的照明。这个想法是为了获得一个图像系列的闪烁出现在不同的位置在每个单独的图像。结合的信息出现在所有系列的画面我们可以ob-tain清廉形象的寄生特性从elim-inated闪烁。然后,结果结合图像可以被认为是一个由一个先进yet-not-existing成像传感器是闪烁的免疫。
3图像融合
这个问题获得一个合成图像从一个图像系列ad-dressed图像融合。在我们的例子中,我们的目标是可靠的集成图像信息从四个图像缺陷检测。
图1所示。四个相同的图像区域获得了在不同照明。柱头缺陷的大小(在上面左图)大约是25毫米x 0.5毫米。由于considera-ble闪烁,阴影和材料的显微组织存在于图像,这些小缺陷的检测无法进行可靠的使用只有一个图像。
融合源图像的许可抑制无关的特征和con-centrate只突出信息。那么相对应的微妙特性的检测缺陷能够可靠地进行。
理想情况下,融合算法应满足需求[1]:(i)保存所有rele-vant信息包含在输入图像;(2)最小化任何工件或incon-sistencies融合图像;(3)容忍缺陷幸免噪声的引入和无关紧要的部分图像。
在文献[2],融合过程进行了在不同级别的信息表示:信号;像素;特性;象征性的水平。在[3]中,感兴趣的信息从每个图像分别提取,然后结合在决策水平。不幸的是,由于这种方法依赖于最初的提取特性这不可幸免地导致im-age减少可用的信息,而包含在原始图像的像素,之前任何融合的过程。更一般的和强大的方法来处理两个图像simulta-neously通过之前的融合策略。在本文中,我们专注于所谓的像素级融合。
甚至聚焦在像素级别有许多不同的融合技术:加权组合,优化方法[5][6],是生物的基础算法和多分辨率分解(先生)[7]。图像融合技术先生decom-pose图像分成几个组成部分,体现了信息在不同reso-lution鳞片。我们选择一个多分辨率分解方案,因为图像中我们感兴趣的是单独的结构存在细和粗尺度。此外,算法计算效率。
4结论
自动检测的复杂形状的表面上金属板是极其困难的细微特征的缺陷和高反光的金属表面的性质。为了提高缺陷检测的可靠性,我们获得一系列四图像的每个检验区域使用互补的照明条件。我们提出了一种多分辨率图像融合算法获得一个有意义的单一合成图像的伪特征源于im-age闪烁的消除。融合已经完成使用一级哈尔变换,使从一个图像低频信息的快速组合和更高的频率信息。得到的融合图像con-tain信息相比,单个源图像质量改善来推断柱头缺陷的存在与否比任何单独的图像融合过程中使用。
Inspection of Stamped Sheet Metal Car Parts using a Multiresolution Image
Fusion Technique
Abstract. This paper presents an image processing algorithm for on-line in-spection
of large sheet metal car parts. The automatic inspection of stamped sheet metal is not an
easy task due to the high reflective nature of the material and the nearly imperceptible
characteristics of the defects to be detected. In or-der to deal with the ubiquitous glints,
four images of every zone are acquired il-luminating from different directions. The image
series is fused using a Haar wavelet transform into a single image where the spurious
features originated by the glints are eliminated without discarding the salient information.
Our results clearly suggest that the wavelet based fusion offers a powerful way to obtain a
clean image where the subtle defects can be detected reliably.
1 Introduction
One of the primary objectives for the highly competitive automotive industry is to cut
costs guaranteeing the 100 percent of quality parts. However, achieving zero defects in the
parts is difficult to accomplish despite years of improvements in the manufactur-ing
processes. In this framework automatic inspection of surface defects has emerged as a
necessary task for manufactures who strive to improve product quality and pro-duction
efficiency.
This paper has been motivated by the need for an automated inspection technique that
detects small defects on the sheet metal forming processes. The nearly impercep-tible
characteristics of the defects and the high reflective nature of the formed metallic surfaces
have prevented an early development of an automatic technique.
Sheet metal forming or stamping is a manufacturing process where a sheet is clamped
around the edge and formed into a cavity by a punch. The metal is stretched by membrane
forces, being conformed to the shape and dimensions to those of the active elements of the
pressing device.
Stamping is one of the most common manufacturing processes especially in the au-to-motive sector. Everyday, millions of parts are made by stamping, ranging from small
fasteners to large bodywork panels. The extensive application of this manufac-turing
technique is due to the technical and economic advantages that sheet metal forming
presents compared to other manufacturing processes such as casting, forging or machining:
presses allow high production rates, lightweight parts with very com-plex shapes may be
obtained and finally, the manufactured parts do not require any additional mechanical
processing.
Despite these remarkable advantages, it is well known that sheet metal forming is a
intricate technology. In bodywork manufacturing, the stamping operation is completed
using an enormous force in a very short period of time in a process that involves a great
number of parameters such as material properties, thickness, geometric shape and
dimension, punch velocity, vibration modes, lubrication, surface finish and clean-ness of
the die. As a result, some unavoidable problems may occur in practice, being one of the
most common the fracture of the material due to the thickness diminution when complex
parts are stamped into shape.
The apparition of fractures is restricted to some localized zones, where high de-mands
are placed on the material (double curvatures, sharp corners, ), however it
is visually difficult to detect them because they are not always character-ized by an open
crack. Often, only a localized reduction of the sheet metal, known as necking, may appear.
The localized necking, if the tensile forces continue, is terminat-ed by the final separation
or crack.
When necking occurs, an early detection of the defective parts is of crucial im-portance in bodywork manufacturing. If a defective part slips past the normal quality
procedures and arrive at the assembling line, the manufacturer will fall into a very costly
lapse. Once the bodywork of the car is completely assembled, it is painted and introduced
into a drying oven. There, under the high temperature, the material dilates originating
intolerable notorious cracks where the metal fibers were initially broken by necking.
The detection of the defects at this point is extraordinary expensive because the cracks
are impossible to repair and there is no other choice but to send the complete assembled
and painted bodywork to the scrap yard.
Currently, the only online inspection method for the stamped sheet metal parts is
human visual inspection. Human visual inspection is costly, time-consuming, and prone to
making errors due to inspectors’ lack of experience and fatigue. The task of care-fully
inspecting a great number of stamped parts is especially tedious considering the nearly
imperceptible characteristics of the necking and the high reflective nature of the metallic
surfaces. In a framework where the product quality is mainly a competi-tive value, it
becomes necessary the inclusion of automatic systems in this type of inspection processes.
Several difficulties exist in automatically inspecting stamping defects. The main
complication is that the inspection must be performed on complex shaped parts of zinc
coated steel. Due to the high reflective nature of this material, a homogeneous illumi-nation of the surface is practically impossible to obtain.
2 Related Work
Image processing technology has enabled to automate many visual inspection tasks
in industrial environments especially in the automotive industry. However, online
automatic inspe-ction of shaped metallic surfaces has not been accompli-shed yet. Sev-eral
solutions have been presented for automatically scanning flat reflective surfaces but have
not hitherto been applicable to three-dimensional sha-ped surfaces. Flat surfa-ces are
inspected in arrangements in which an illumination beam is sent to the sur-face and their
flatness makes it simple to predict where the reflected beam will be and to collect it
suitably. In this case, defects and flaws on the material beco-me obvious by the change in
the reflection behavior. However, for metallic shaped objects such as stamped parts it is
extremely complicated or impossible to predict the path of the reflected beam.
Several methods can be considered for the inspection of car body surfaces but none of
them present the accuracy, reliability and speed required in an industrial manufac-turing
line. Triangulation techniques, such as fringe projection and structured lighting, are
difficult to use on metallic surfaces, because they presuppose a diffuse reflectance.
Furthermore these techniques lack of the sensitivity needed to detect necking defects
characterized by a very small variation of the surface curvature. Other methods such as
stylus instruments are more accurate and they permit a precise quantitative charac-
terization of this type of defects but their measuring process are extremely slow to be used
in a production line. Other techniques based in interferometry such as conoscop-ic
holography are successfully applied for the inspection of precision components in
nanotechnology however they are too sensitive to the rough conditions present in the
automotive stamping lines.
Due to the lack of feasible methods for on-line inspection of car body parts, this task
is mostly done by human operators up to now. Aiming to conquer the above difficulties,
this research proposes a computer vision system that employs an image fusion algorithm
for detecting the cracks and the necking defects in the stamped parts.
Image fusion algorithms allow integrating a series of images to produce a compo-site
image that will inherit most salient features from the individual images. The series used for
fusion can be taken from multimodal imaging sensors or from the same imag-ing sensor at
different times.
In our case, we employ only a CCD camera to acquire four images of the same area
but each image is acquired under a different illumination point. The idea is to obtain an
image series where the glints appear in different positions in each of the individual images.
Combining the information present in all the images of the series we can ob-tain a clean
image where the spurious features proceeding from glints have been elim-inated. Then, the
resulting combined image could be thought of as an image taken by an advanced yet-not-existing imaging sensor that is immune to glints.
3 Image Fusion
This problem of obtaining a single composite image from an image series is ad-dressed by image fusion. In our case, the goal is to reliably integrate image infor-mation
from four images to aid in defect detection.
Fig. 1. Four images of the same area are acquired under different illumination. The
size of the necking defect (marked on the top left image) is about 25 mm x 0.5 mm. Due to
the considera-ble amount of glints, shadows and the microtexture of the material present in
the images, the detection of these small defects can not be carried out reliably using only
one image.
The fusion permits to suppress the irrelevant features of the source images and con-centrate only on the salient information. Then the detection of the delicate features
corresponding to the defects can be carried out reliably.
Ideally, a fusion algorithm should satisfy the requirements [1]: (i) preserve all rele-vant information contained in the input images; (ii) minimize any artifacts or incon-sistencies in the fused image; (iii) tolerate imperfections avoiding the introduction of noise
and irrelevant parts of the image.
In the literature [2], the fusion process has been carried out at different levels of in-formation representation: signal; pixel; feature; and symbolic level. In [3], information of
interest was extracted from each image separately and then it was combined at a decision
level. Unfortunately, because this approach rely upon the initial extraction of features this
inevitably results in the reduction of the available information in the image, compared to
that contained in the original image’s pixels, prior to any fusion process. A more general
and powerful approach is to process the two images simulta-neously by means of a
previous fusion strategy. In this paper we have focused on the so-called pixel level fusion.
Even focussing at the pixel level there are many different fusion techniques: weighted
combination, optimization approaches [5][6], biologically-based algorithms and
multiresolution (MR) decompositions [7]. MR image fusion techniques decompose the
image into several components that embody the information at different resolution scales.
We chose a multiresolution solution because what we are interested in in the image is the
individual structure being thin and thick. In addition, the algorithm is efficient.
4 conclusion
Metal plates on the surface of the complex shapes of automatic detection are the
defects of extremely difficult features and the properties of highly reflective metal surfaces.
In order to improve the reliability of defect detection, we obtained a series of four images
for each test area using complementary lighting conditions. We proposed a multi-resolution image fusion algorithm to obtain a meaningful single composite image based on
the elimination of im-age flicker. Fusion has completed the use of the first level Hal
transformation, enabling the rapid combination of low-frequency information from an
image and higher frequency information. The result of the fusion image con-tain
information is that the quality of the single source image is improved to infer that the
existence of the column head defect is more than any single image fusion.
对两辆停放的客运汽车进行冲击能量治理的冲击试验:对乘员爱护的分析测量
摘要
作为一个持续的客运铁路设备安全研究的一部分,全面冲击试验的两辆车与能量吸取结构进行了2月26日,2004年。在该测试中,两个耦合的汽车影响刚性屏障29英里每小时。类似于本系列之前的全面测试(1、2、3),拟人化的测试设备(或ATDs)包括在轨道车测量在碰撞过程中乘员响应。这些ATDs检测与加速度计和负载细胞测量乘客受伤的危险。本文初步测试结果。
作为一个持续的客运铁路设备安全研究的一部分,全面冲击试验的两辆车与能量吸取结构进行了2月26日,2004年。在该测试中,两个耦合的汽车影响刚性屏障29英里每小时。类似于本系列之前的全面测试(1、2、3),拟人化的测试设备(或ATDs)包括在轨道车测量在碰撞过程中乘员响应。这些ATDs检测与加速度计和负载细胞测量乘客受伤的危险。本文初步测试结果。
五仆人试验中可停放两辆测试。三个试验类似的可停放两辆测试上进行常规设备,4月4日举行2000:转发——面对居住者在城际席位,前方的居住者通勤席位,和后置在通勤乘客座位。试验研究的两个仆人的互动与工作站表面临座位配置。这两个测试试验ATDs增加记录腹部冲击响应的能力。帮助分析这个问题,开发了参数化计算机模型的四个五仆人的试验。模型从模拟早些时候,要么修改的通勤席位,或者新开发的城际座椅和桌子与雷神ATD试验。模型验证基于以前的测试数据和/或事故。的预测ATD响应同意紧密的整体运动学ATDs,和许多的测量用的ATDs全面测试。
介绍
支持联邦铁路治理局,一系列嵌套的全面影响进行评估和提高铁路客运的防撞性车辆。表1列出了试验条件和日期。三个串联碰撞测试是使用现有的传统设备进行的。本文中描述的测试是第二个直列式冲击试验使用改进的防撞性设计设备。
原则这个测试的目的是为了展示耦合的汽车碰撞性能的改性与终端结构设计通过控制粉碎吸取能量,并比较不同汽车的碰撞行为修改与现有传统的乘用车。对于这个测试,现有的两个传统汽车
的最终结构被拆除,取而代之的是崩溃能源治理(CEM)结构。杰姆的设计的目的是爱护汽车的占地面积在碰撞。更多细节在结构方面的测试可以在参考文献[4]和[5]。
表1-在测试流程客运设备全面影响名义影响速度
传统的
测试条件
设计
设备
单车的影响 Nov. 16, 1999 Dec 3, 2003
与固定的障碍 35 mph 34 mph
Two-coupled-car影响 Apr. 4, 2000 Feb. 26, 2004
与固定的障碍 26 mph 29 mph
出租车一定训练的Planned for
影响 Jan. 31, 2002 2005
与locomotive-led火车 30 mph
设备
改进的
防撞性
虽然杰姆设计保留了更多的汽车在火车碰撞的占地面积,这是以牺牲更严峻的二次环境影响居住者坐在火车的主要汽车或两个。受伤的危险评估在不同的座位配置,五仆人试验设计。仆人试验及其在汽车的位置如图1和图2所示。
Exp. 1-1 Forward-Facing Intercity Seat
IMPACCATRIFNRGOENNT D
LEADING CAR
Exp. 1-2 RSSB ATD w/table
Exp. 1-3 THOR ATD w/table
图1所示。领先的汽车乘员的位置试验
Exp. 2-1 Rear-Facing Commuter Seat
LEACDAIRFNRGOENNT D
TRAILING CAR
Exp. 2-2 Forward-Facing Commuter Seat
图2.落后于汽车乘员的位置试验
乘员试验的描述
CEM
两车碰撞试验碰撞动力学模型表明,汽车的改性的力/沉迷行为会导致更严峻次生环境影响比在两辆车常规测试 [4]。次生影响指之间乘员和一些部分的内部,影响通常前方座椅、
表或舱壁。虽然 CEM 设计估量更好地保持被占据的空间,前面的分析 [6] 表示在两辆车 CEM
测试中的二次冲击速度可能是 40-85%高于可比常规测试中。
有两个必要的因素,在碰撞过程中爱护住客。它是划分居住者的第一需要。条块分割是指限制的住户,通常内放射座位和埋伏阻生的座椅之间的空间轨迹。如果划分丢失,存在危险,乘员运动学是较难预测,而且还有危险的显著波动性更大的表面。划分已被证明是一种有效的乘员爱护战略
[7]。第二,负荷和加速度传授对住户的行动在划分居住者的座位安排一定在最大损伤条件值内。由五个乘员试验评估这两个必要元素。
座位安排已以前包括在常规的全面测试,以及在雪橇测试使用三乘员试验 (exp.1-1,2-1 和
2-
2)。这些座位已被修改,认定有必要从每个测试迭代。两个乘员试验检查乘员与工作站表的相互作用
在面对座位安排。除了上述的目标,这些试验设法收集指定改进耐撞性工作站表的设计要求所需的信息。
测试第二个目的是收集数据以改进和验证每个乘员试验的计算机模型。随着更多的测试数据收集关于每个座位类型和配置,计算机模型可以用于更可靠地估量许多不同碰撞情况下的损伤危险。
试验 1-1 面向前方城际席位两个 95
th
百分位男性,领先的汽车
试验 1 1 包括面向前方城际席位,与 41
英寸座位间距的两双。这些座位在城市间席位在两辆车和火车列车的常规试验,在基地包括加强的座椅靠背带能量吸取器相同的方式进行了修改。这些修改是必要的以确保乘员在碰撞期间划分。国际米兰市座位修改的更多详细信息,请参阅参考文献
[3]。本试验的目的是确定是否这些修改充分爱护乘员在更严峻的碰撞环境。
两种混合三 95 th
男性 ATDs 被安置在后座双个百分点。试验 1 1 预先测试照片如图 3
ATDs 所示。注意这些照片所示的胶带
在其初始位置持有期间在埋伏阻生的墙上,这款车的方法,所以它并不影响它们的运动,在碰撞过程中穿孔。试验靠近前面的领先影响在墙上的那辆车。ATDs
测试中的所有
股骨轴向负荷、
剪力和轴颈负荷和颈部屈伸弯矩。落地式的双轴向加速度计还测量了纵向和垂直车加速度。
ATDs。这两个 ATDs
名潇洒,也有两辆车 CEM
装配了仪器来测量头部和胸部的三轴加速度、
图 3.预测试试验 1 1 张的照片
预先测试 MADYMO [8] 计算机模型预测超过头部、
颈部和股骨的准则,并超过胸部加速度标准低概率的可能性极高。而座椅靠背估量将旋转座椅基地约三十度左右,住客估量将保持隔离。
试验 2-1面向后方通勤者的座位,一个 50
th
百分位男性,跟随的车
试验 2-1 包括改性面向后方三人 M-风格通勤单座。改性的位子是类似于测试在两辆车常规测试 [2]
跟随车的座位。座位的修改包括强化的地板底座/附件和帧加劲肋之间的座椅靠背和座位基地。这次试验的目标是要确保座椅附件都足以划分乘员,并表明,朝后的座位是一种有效的乘员爱护战略。
一个混合三 50 th
扶贫放置在中间的座位位置的个百分点 (见图
4)。试验位于周边,跟随的教练车子的前面。扶贫仪表测量三轴的头部和胸部加速度、
剪力和轴向颈部负荷和颈部屈伸弯矩。
预先测试 MADYMO 计算机模型预测超过的头部、
胸部及股骨的标准,超过颈部标准适度概率的可能性极低。
图 4.预测试试验 2-1 的照片
试验 2-2包括两个面向前方三人 M-风格通勤席位。正向座位被修改上文所述
试验 2-1。检测混合 III 50th
百分位男性 ATDs
位于后排座位的窗口和通道位置。固定的混合二 50th
百分位男性扶贫位于中间的座位的位置
(见图 5)。在窗口和过道座位 ATDs 装配了仪器来测量三轴的头部和胸部加速度、
股骨轴向负荷、
剪切和轴颈荷载和颈部屈伸时刻。落地式的双轴向加速度计还测量了纵向和垂直加速度。
预先测试 MADYMO 计算机模型预测超过的头部、
颈部和股骨的标准,超过胸部加速度标准低概率的可能性极高。
图 5.预测试试验 2 2 张的照片
试验 1-2 和 1-3 朝向座椅与表
在这个测试中使用 ATDs 坐在工作站表 (exp.1-2 和 1-3)
进行了两个新乘员试验。这些试验的动力是其中 MetroLink 旅客列车重大铁路交通事故与一辆
2002 年 4 月 23 日发生在普拉森舍,CA 的 BNSF 货运列车相撞。三人死亡的两个可能由于腹部︰
胸伤致影响与工作站表 [9]。
与表有关的试验的目的是收集的相关信息的耐撞性的行为这座位配置,进展潜在对策。一般情况下,腹部损伤不也被看作是头部、 胸部、
颈部及股骨受伤。存在着建议的损伤准则却腹部受伤没有政府的标准。标准的混合 III ATDs
没有仪器来测量腹部力量或渗透。
表试验的另一个目标是收集和比较两个试验 ATDs 遭受同样的碰撞条件的测试数据。ATDs
表试验中使用了雷神 (Test 装置H在世Occupant Restraint) [10] 和混合 3RS (目前未记录)。50th
百分位男性雷神 Alpha 扶贫是国家运输生物力学研究中心的国家公路交通安全治理局 (NHTSA)
的产物。1.1 版 2001 年 12 月被释放。它具有改进的 biofidelic 功能,显著提高了检测能力。
运输研究试验室 (TRL 有限公司)
有限公司开发的联合王国的铁路安全与标准委员会指导下混合 3 铁路安全 (RS) 测试假人。混合
3RS 使用标准的混合三头、 颈部、 手臂、 腿、
上部的胸部和几个脊柱组件,并纳入症结胸位移测量装置,脊柱 flex 联合、
下腹部插入包括双万向支架式字符串电位器 (DGSP) 部队,并从雷神的骨盆。
结论
作为两汽车碰撞测试的碰撞能量治理设备的一部分进行了五个内部乘员试验。这些试验的三个是类似于那些在以前这类损伤结果可以进行比较以冲击测试,涉及传统的全面冲击试验和 CEM
设备进行。使用表和试验假人来分析腹部受伤乘员坐在表的危险进行了两个新的试验。
本文介绍了冲击试验是利用在 CEM 设备检测的 ATDs
系列的第一个。基于计算机模拟结果,估量两车 CEM
测试会产生最严峻次生影响环境的系列中的任何测试。初步测试结果证明,两辆车 CEM
测试中的次生影响环境是比先前的测试的更严峻。通过量化的动态环境,可以提出、
测试和评价内部修改以降低其危害程度。事实上,面向后方通勤座位试验证明成功的一个可能的补救方法。
尽管严峻碰撞环境,测量的损伤结果一般低于预期。只有少量的损伤阈值被超过。在面向后方座位配置导致的损伤之间的任何测试配置最低的可能性超过了无损伤准则。虽然没有损伤准则被超出了通勤者面向前方座位试验中,从三个 ATDs
负载就足以导致严峻变形的座椅靠背,造成条块分割的损失。在面向前方城际席位扶贫超过头部损伤准则。
本文协商了研究进行作为主办的联邦铁路治理局进展与研究办公室设备安全研究项目的一部分。作者想要博士汤姆蔡、 项目经理和女士克莱尔 Orth、 司首席、 设备和运营实践研究部、
办公室、 研究室和进展、 联邦铁路治理局,感谢他们的支持,以及瓦克 Spons、 FRA
驻地工程师在运输技术中心,用于治理全面测试工作。
作者还要感谢其执行乘员试验工作中的仿真技术公司、 雷神 NHTSA
国家运输生物力学研究中心项目经理马克夸夫特,TTCI
实施的影响的结构方面测试),为提供混合 3RS
扶贫提供雷神扶贫和联合王国的铁路安全与标准委员会。A.本杰明 · 帕尔曼,塔夫茨大学教授协助编辑本文要额外的感谢。
TWO-CAR IMPACT TEST OF CRASH-ENERGY MANAGEMENT
PASSENGER RAIL CARS:ANALYSIS OF OCCUPANT PROTECTION
MEASUREMENTS
ABSTRACT
As a part of ongoing passenger rail equipment safety research, a full-scale impact
test of two cars with energy absorbing end structures was carried out on February 26, 2004. In this test,
two coupled cars impacted a rigid barrier at 29 mph. Similar to previous full-scale tests in the series
[1,2,3], anthropomorphic test devices (or ATDs) were included on the rail cars to measure the occupant
response during the collision. These ATDs were instrumented with accelerometers and load cells to
measure the injury risk to the occupants. This paper presents preliminary tests results.
Five occupant experiments were included in the two-car test. Three of the experiments were similar
to those conducted on the two-car test of conventional equipment that was held on April 4, 2000: forward-
facing occupants in inter-city seats, forward-facing occupants in commuter seats, and rear-facing
occupants in commuter seats. Two of the experiments examine the interaction of an occupant with a
workstation table in a facing -seat configuration. These two tests used experimental ATDs with an
increased capacity for recording abdominal impact response. To aid the analysis of this problem,
MADYMO computer models were developed for four of the five of the occupant experiments. The
models were either modified from earlier simulations, in the case of the commuter seats, or newly
developed, in the case of the inter-city seats and table experiment with THOR ATD. The models were
validated based on previous tests and/or accident data. Predictions of the ATD response agree closely for
the overall kinematics of the ATDs, and for many of the measurements made with the ATDs in the full-scale test.
INTRODUCTION
In support of the Federal Railroad Administration, a series of in-line full-scale impact tests have been
conducted to evaluate and improve the crashworthiness of passenger rail vehicles. Table 1 lists the test
conditions and date. Three in-line collision tests have been conducted using existing conventional
equipment. The test described in this paper is the second in-line impact test using improved
crashworthiness design equipment.
The principle objective of this test was to demonstrate the collision performance of coupled cars
modified with end structures designed to absorb energy through controlled crush, and to compare the
collision behavior of the modified cars with that of existing conventional passenger cars. For this test, the
end structures of two existing conventional cars were removed and replaced by crash energy management
(CEM) end structures. The purpose of the CEM design is to preserve the occupied area of the car during a
collision. More detail on the structural aspects of the test can be found in References [4] and [5].
Table 1. In -Line Passenger Equipment Full-Scale Impact Tests with Nominal
Impact Speeds
Test
Conditions
Improved
ConventionCrashworthinal ess
Equipment
Single-car impact Nov. 16,
with 1999
fixed barrier 35 mph
Design
Equipment
Dec 3, 2003
34 mph
Two-coupled-car
impact Apr. 4, 2000 Feb. 26, 2004
with fixed barrier 26 mph 29 mph
Cab car-led train Jan. 31, Planned for
impact 2002 2005
with locomotive-led train 30 mph
While the CEM design preserves more occupied area of the car during a train collision, it comes at
the expense of a more severe secondary impact environment for occupants seated in the leading car or
two of the train. To assess injury risk in different seating configurations, five occupant experiments were
designed. The occupant experiments and their placement in the cars are depicted in Figure 1 and 2.
Exp. 1-1 Forward-Facing Intercity Seat
IMPACTINGEND
CARFRONT
LEADING CAR
Exp. 1-2 RSSB ATD w/table
Exp. 1-3 THOR ATD w/table
Figure 1. Location of Leading Car Occupant Experiments
Exp. 2-1 Rear-Facing Commuter Seat
CARFRONT
LEADINGEND
Exp. 2-2 Forward-Facing Commuter Seat
Figure 2. Location of Trailing Car Occupant Experiments
Description Of Occupant Experiments
A collision dynamics model of the CEM two-car impact test indicated that the modified force/crush
behavior of the cars would result in a more severe secondary impact environment than in the two-car
conventional test [4]. Secondary impact refers to the impact between the occupant and some part of the
interior, usually the forward seat, table or bulkhead. While the CEM design was expected to better
preserve occupied space, previous analysis [6] has indicated that the secondary impact velocity in a two-car CEM test could be 40-85% higher than in a comparable conventional test.
There are two necessary elements to protect occupants during a collision. It is first necessary to
compartmentalize the occupants. Compartmentalization refers to limiting the trajectory of the occupant,
usually within the space between the launch seat and the impacted seat. If compartmentalization is lost,
there exists a risk that the occupant kinematics are less predictable, and there is a risk of striking more
volatile surfaces. Compartmentalization has been shown to be an effective occupant protection strategy
[7]. Second, the loads and accelerations imparted on the occupants by the seating arrangements that act in
compartmentalizing the occupants must be within maximum injury criteria values. These two necessary
elements are evaluated by the five occupant experiments.
Three of the occupant experiments (Exp. 1-1, 2-1, and 2-2) used seating arrangements that have been
previously included in the conventional full-scale tests, as well as in sled testing. These seats have been
modified as determined necessary from each testing iteration. Two of the occupant experiments examine
the interaction of an occupant with a workstation table in a facing-seat arrangement. In addition to the
aforementioned objectives, these experiments sought to collect information necessary for specifying the
design requirements of an improved crashworthiness workstation table.
A secondary objective of the tests was to gather data to refine and validate computer models of each
occupant experiment. As more test data is collected on each seat type and configuration, the computer
models can be used more reliably to estimate the injury risk of many different collision scenarios.
Experiment 1-1 Forward-Facing Inter-City Seats, Two 95th Percentile Males,
Leading Car
Experiment 1-1 consisted of two pairs of forward-facing inter-city seats, with a seat pitch of 41
inches. These seats were modified in the same manner as the inter-city seats in the two-car and train-to-train conventional tests, including strengthened seat backs with an energy absorber in the base. These
modifications were necessary to ensure compartmentalization of the occupant during a collision. See
Reference [3] for more detail on the inter- city seat modifications. The objective of this experiment was to
determine if these modifications sufficiently protect the occupant in a more severe collision environment.
Two Hybrid III 95th percentile male ATDs were positioned in the rear seat pair. A pre-test photo of
Experiment 1-1 is shown in Figure 3. Note that the duct tape shown in these photographs holds the ATDs
in their initial positions during the car’s approach to the impacted wall, and is perforated so it does not
affect their motion during the impact. The experiment was located near the front of the leading car that
impacted the wall. The ATDs were unrestrained, as were all the ATDs in the two-car CEM test. Both
ATDs were instrumented to measure the tri-axial head and chest acceleration, axial femur load, shear and
axial neck loads, and neck flexion/extension moment. A floor-mounted bi-axial accelerometer also
measured the longitudinal and vertical car acceleration.
Figure 3. Pre-Test Photo of Experiment 1-1
The pre-test MADYMO [8] computer model predicted a high likelihood of exceeding the head,
neck and femur criteria, with a low probability of exceeding the chest acceleration criteria. While the seat
backs are expected to rotate about the seat base about thirty degrees, the occupants are expected to remain
compartmentalized.
Experiment 2-1Rear-Facing Commuter Seat, One 50th Percentile Male, Trailing
Car
Experiment 2-1 consisted of a single modified rear-facing three-person M-Style commuter seat. The
modified seat was similar to the seat tested in the trailing car of the two-car conventional test [2]. Seat
modifications included a strengthened floor pedestal/attachment and frame stiffeners between the seat
back and seat base. The objectives of this experiment were to ensure that the seat attachments were
sufficient to compartmentalize the occupant, and to show that rear-facing seats are an effective occupant
protection strategy.
One Hybrid III 50th percentile ATD was positioned in the middle seat position (see Figure 4). The
experiment was located near the front of the trailing coach car. The ATD was instrumented to measure tri-axial head and chest acceleration, shear and axial neck loads, and neck flexion/extension moment.
The pre-test MADYMO computer model predicted a low likelihood of exceeding the head, chest and
femur criteria, with a moderate probability of exceeding the neck criteria.
Figure 4. Pre-Test Photo of Experiment 2-1
Experiment 2-2 Forward-Facing Commuter Seat, Three 50th Percentile Males,
Trailing Car
Experiment 2-2 consisted of two forward- facing three-person M-Style commuter seats. The forward
seat was modified as described above for Experiment 2-1. Instrumented Hybrid III 50th percentile male
ATDs were located in the window and aisle positions of the rear seat. An uninstrumented Hybrid II 50th
percentile male ATD was located in the middle seat position (see Figure 5). The ATDs in the window and
aisle seats were instrumented to measure tri-axial head and chest acceleration, axial femur load, shear and
axial neck loads, and neck flexion/extension moment. A floor-mounted bi-axial accelerometer also
measured the longitudinal and vertical acceleration.
The pre-test MADYMO computer model predicted a high likelihood of exceeding the head, neck
and femur criteria, with a low probability of exceeding the chest acceleration criteria.
Figure 5. Pre-Test Photo of Experiment 2-2
Experiments 1-2 and 1-3Facing Seats with Tables
Two new occupant experiments were conducted in this test using ATDs seated at workstation tables
(Exp. 1-2 and 1-3). The impetus for these experiments was a rail accident in which a MetroLink
passenger train collided with a BNSF freight train that occurred in Placentia, CA on April 23, 2002. Two
of the three fatalities were likely caused by abdominal/chest injuries due to impact with a workstation
table [9].
The objective of the experiments with tables was to gather information about the crashworthiness
behavior of this seating configuration, in order to develop potential countermeasures. In general,
abdominal injuries are not as well understood as head, chest, neck and femur injuries. There exist
suggested injury criteria but there are no governmental criteria for abdominal injuries. The standard
Hybrid III ATDs do not have instrumentation to measure abdominal forces or penetration.
Another objective of the table experiments was to collect and compare test data from two
experimental ATDs subjected to the same collision conditions. The ATDs used in the table experiments
were the THOR (Test Device for Human Occupant Restraint) [10] and the Hybrid 3RS (not currently
documented). The 50th percentile male THOR Alpha ATD is a product of the National Transportation
Biomechanics Research Center of the National Highway Traffic Safety Administration (NHTSA) .
Version 1.1 was released in December 2001. It has improved biofidelic features and has significantly
enhanced instrumentation capabilities.
Transportation Research Laboratories, Limited (TRL, LTD.) developed the Hybrid 3 Rail Safety (RS)
test dummy under the direction of the United Kingdom’s Rail Safety and Standards Board. The Hybrid
3RS uses the standard Hybrid III head, neck, arms, legs, upper thorax, and several spine
Summary And Conclusinns
Five interior occupant experiments were conducted as part of the two-car impact test of crash energy
management equipment. Three of these experiments were similar to those conducted in previous full-
scale impact tests such that injury results can be compared for impact tests involving conventional and
CEM equipment. Two new experiments were conducted using tables and experimental dummies to
analyze the risk of abdominal injury for occupants seated at tables.
The impact test described in this paper is the first in the series that utilized instrumented ATDs in
CEM equipment. Based on computer modeling results, it was anticipated that the two-car CEM test
would produce the most severe secondary impact environment of any test in the series. Preliminary test
results confirm that the secondary impact environment in the two-car CEM test is indeed more severe
than that of the previous tests. By quantifying the dynamic environment, interior modifications to mitigate
the severity can be proposed, tested and evaluated. In fact, the rear-facing commuter seat experiment
confirms the success of one potential remedy.
In spite of the severe collision environment, the measured injury results were generally lower than
expected. Only a few injury thresholds were exceeded. No injury criteria were exceeded in the rear-facing
seating configuration resulting in the lowest likelihood of injury among any of the configurations tested.
While no injury criteria were exceeded in the forward-facing commuter seat experiment, the load from
the three ATDs was sufficient to cause severe deformation of the seat back, resulting in a loss of
compartmentalization. The ATD in the forward-facing inter-city seats exceeded the head injury criteria.
Acknowledgments
The research discussed in this paper was performed as part of the Equipment Safety Research
Program sponsored by the Office of Research and Development of the Federal Railroad Administration.
The authors would like to thank Dr. Tom Tsai, Program Manager, and Ms. Claire Orth, Division Chief,
Equipment and Operating Practices Research Division, Office of Research and Development, Federal
Railroad Administration, for their support, as well as Gunars Spons, FRA Resident Engineer at the
Transportation Technology Center, for managing the full-scale test effort.
The authors would also like to thank Simula Technologies, Inc. for their work in implementing the
occupant experiments, TTCI for implementing the structural aspects of the impact test, Mark Haffner,
THOR Program Manager at the NHTSA National Transportation Biomechanics Research Center), for
providing the THOR ATD, and the United Kingdom’s Rail Safety and Standards Board, for providing the
Hybrid 3RS ATD. Additional thanks go to A. Benjamin Perlman, Professor at Tufts University, for
assistance in editing this paper.
更多推荐
工作,试验,图像,实习,线束,汽车,测试
发布评论