2024年2月3日发(作者:福特福克斯三厢二手车)
第十八章-eviews软件学习-ARCH和GARCH估计-图文
一、GARCH(1,1)模型我们常常有理由认为ut的方差依赖于很多时刻之前的变化量(特别是在金融领域,采用日数据或周数据的应用更是如此)。这里的问题在于,我们必须估计很多参数,而这一点很难精确的做到。但是如果我们能够意识到方程(3)不过是t2的分布滞后模型,我们就能够用一个或两个t2的滞后值代替许多ut2的滞后值,这就是广义自回归条件异方差模型(generalizedautoregreiveconditionalheterocedaticitymodel,简记为GARCH模型)。在广义的ARCH模型中,要考虑两个不同的设定:一个是条件均值,另一个是条件方差。在标准化的GARCH(1,1)模型中:yt某tutu2t2t12t1(18.1)(18.2)2t(18.1)中给出的均值方程是一个带有误差项的外生变量函数。由于前面信息为基础的一期向前预测方差,所以它被叫做条件方差。是以6(18.2)中给出的条件方差方程是下面三项的函数:1.均值:2.用方程(18.1)的残差平方的滞后来度量从前期得到的波动性的信息:u2(ARCH项)。t13.上一期的预测方差:t21(GARCH项)。GARCH(1,1)中的(1,1)是指阶数为1的GARCH项(括号中的第一项)和阶数为1的ARCH项(括号中的第二项)。一个普通的ARCH模型是GARCH模型的一个特例,即在条件方差方程中不存在滞后预测方差的说明。7在EView中ARCH模型是在误差是条件正态分布的假定下,通过极大似然函数方法估计的。例如,对于GARCH(1,1),t时期的对数似然函数为:其中111222ltlog(2)logt(yt某t)/t222(18.3)2t1(yt1某t1)2t22t1u2t1(18.4)这个说明通常可以在金融领域得到解释,因为代理商或贸易商可以通过建立长期均值的加权平均(常数),上期的预期方差(GARCH项)和在以前各期中观测到的关于变动性的信息(ARCH项)来预测本期的方差。如果上升或下降的资产收益出乎意料地大,那么贸易商将会增加对下期方差的预期。这个模型还包括了经常可以在财务收益数据中看到的变动组,在这些数据中,收益的巨大变化可能伴随着更进一步的巨大变化。8有两个可供选择的方差方程的描述可以帮助解释这个模型:1.如果我们用滞后方差递归地替代(18.2)式的右端,就可以将条件方差表示为滞后残差平方的加权平均:j12utj.1j12t(18.5)我们看到GARCH(1,1)方差说明与样本方差类似,但是,它向更远的滞后加权了平方误差。92.收益平方中的误差通过tu2t12t2t给出。用其替代方差方程
(18.2)中的方差并整理,得到关于误差的模型:uu2ttt1.(18.6)因此,平方误差服从一个异方差ARMA(1,1)过程。决定波动冲击持久性的自回归的根是加的和。在很多情况下,这个根非常接近1,所以冲击会逐渐减弱。10
二、方差方程的回归因子方程(18.2)可以扩展成包含外生的或前定回归因子z的方差方(18.7)程:uzt2t2t12t1注意到从这个模型中得到的预测方差不能保证是正的。可以引入到这样一些形式的回归算子,它们总是正的,从而将产生负的预测值的可能性降到最小。例如,我们可以要求:zt某t(18.8)11三、GARCH(p,q)模型高阶GARCH模型可以通过选择大于1的p或q得到估计,记作GARCH(p,q)。其方差表示为:uj2t2itii1j1qp2tj.(18.9)这里,p是GARCH项的阶数,q是ARCH项的阶数。12四、ARCH-M模型方程(18.1)中的某代表在均值方程中引入的外生或先决变量。如果我们yt某tutyt某ttut2t把条件方差引进到均值方程中,就可以得到ARCH-M模型(ARCH-in-Mean,Engle,Lilien,Robin,1987):(18.10)ARCH-M模型的另一种不同形式是将条件方差换成条件标准差:ARCH-M模型通常用于关于资产的预期收益与预期风险紧密相关的金融领域。预期风险的估计系数是风险收益交易的度量。例如,我们可以认为某股票指数,如上证的股票指数的票面收益(returet)依赖于一个常数项,通货膨胀率以及条件方差:returet12tut2tuu2t21t12ptp12t1q2tq13这种类型的模型(其中期望风险用条件方差表示)就称为ARCH-M模型。§18.2在EView中估计ARCH模型估计GARCH和ARCH模型,首先选择Quick/EtimateEquation或Object/NewObject/Equation,然后在Method的下拉菜单中选择ARCH,得到如下的对话框。14与选择估计方法和样本一样,需要指定均值方程和方差方程。一、均值方程在因变量编辑栏中输入均值方程形式,均值方程的形式可以用回归列表形式列出因变量及解释变量。如果方程包含常数,可在列表中加入C。如果需要一个更复杂的均值方程,可以用公式的形式输入均值方程。如果解释变量的表达式中含有ARCH—M项,就需要点击对话框右上方对应的按钮。二、方差方程在VarianceRegreor栏中,可以选择列出所要包含在指定方差中的变量。注意到EView在进行方差回归时总会包含一个常数项作为回归量,所以不必在变量表中列出c。15
三、ARCH说明在ARCHSpecification标题栏下,选择ARCH项和GARCH项的阶数。EView默认为选择1阶ARCH和1阶GARCH进行估计,这是目前最普遍的形式。要估计如上所述的标准GARCH模型,需点击GARCH按钮。其余的按钮将进入更复杂的GARCH模型的变形形式。我们将在本章的后一部分进行讨论。四、估计选项EView为我们提供了可以进入许多估计方法的设置。只要点击Option按钮并按要求填写对话即可。1.回推(Backcating)在缺省的情况下,MA初始的扰动项和GARCH项中要求的初始预测方差都是用回推方法来确定初始值的。16在计算GARCH初始回推方差时,EView首先用系数值来计算均值方程中的残差,然后计算初始值的指数平滑算子。u(1)2022T2j0T1Tj1(u2Tj)(18.11)2在这里,u是均值方程的残差,是无条件方差估计:utT22t12u2022T(18.12)平滑参数0.7。同样地,可以选择无条件方差来初始化GARCH过程:(18.13)如果不选择回推算法,EView会设置残差为零来初始化MA过程,用(18.13)的无条件方差来设置初始化的方差和残差值。但是经验告诉我们,使用回推指数平滑算法通常比使用无条件方差来初始化GARCH模型的效果要理想。172.系数协方差(CoefficientCovariance)点击HeterokedaticityConitentCovariance用Bollerlev和Wooldridge(1992)的方法计算极大似然(QML)协方差和标准误差。如果怀疑残差不服从条件正态分布,就应该使用这个选项。只有选定这一选项,协方差的估计才可能是一致的,才可能产生正确的标准差。注意如果选择该项,参数估计将是不变的,改变的只是协方差矩阵。3.导数方法(Derivative)EView现在用数值导数方法来估计ARCH模型。在计算导数的时候,可以控制这种方法达到更快的速度(较少的函数计算)或者更高的精确性(较多的函数计算)。4.迭代估计控制(Iterativeproce)当用默认的设置进行估计不收敛时,可以通过改变初值、增加迭代的最大次数或
者调整收敛准则来进行迭代控制。5.算法选择(Optimizationalgorithm)ARCH模型的似然函数不总是正规的,所以这时可以利用选择迭代算法(Marquardt、BHHH/高斯-牛顿)使其达到收敛。18§18.3ARCH的估计结果在均值方程中和方差方程中估计含有解释变量的标准GARCH(1,1)模型,ytc某tut(18.14)2t1u2t2t1例1为了检验股票价格指数的波动是否具有条件异方差性,我们选择了沪市股票的收盘价格指数的日数据作为样本序列,这是因为上海股票市场不仅开市早,市值高,对于各种冲击的反应较为敏感,因此,本例所分析的沪市股票价格波动具有一定代表性。在这个例子中,我们选择的样本序列{p}是1998年1月3日至2001年12月31日的上海证券交易所每日股票价格收盘指数,为了减少舍入误差,在估计时,对{p}进行自然对数处理,即将序列{log(p)}作为因变量进行估计。(18-SP文件中eq1方程)19由于股票价格指数序列常常用一种特殊的单位根过程——随机游动(RandomWalk)模型描述,所以本例进行估计的基本形式为:log(pt)log(pt1)ut首先利用最小二乘法,估计了一个普通的回归方程,结果如下:t)1.000027log(pt1)log(p(15531)R2=0.994对数似然值=2874AIC=-5.51SC=-5.51可以看出,这个方程的统计量很显著,而且,拟和的程度也很好。但是观察图1,该回归方程的残差,我们可以注意到波动的“成群”现象:波动在一些较长的时间内非常小(例如2000年),在其他一些较长的时间内非常大(例如1999年),这说明误差项具有条件异方差性。对这个方程进行异方差的White和ARCH-LM检验,发现q=3时的ARCH-LM检验的相伴概率,即P值接近于0,White检验的结果类似,其相伴概率,即P值也接近于0,这说明残差序列存在高阶ARCH效应。20
4、补充说明上面描述的几种检验结果都是根据标准残差utt计算得出的,标准残差utt被定义为传统的均值方程中的残差除以条件标准差。
如果正确设定模型,标准残差应该是独立同分布的随机变量,并且均值为0,方差为1。如果标准方差还服从正态分布,那么估计值就是渐进有效的极大似然估计。然而,即使残差的分布不是正态的,估计值在准极大似然(QML)的假设下仍是一致的。为了用QLM计算有效的推论,当然应该使用HeterokedaticityConitentCovariance选项估计标准误差。36§18.5非对称ARCH模型对于资产而言,在市场中我们经常可以看到向下运动通常伴随着比同等程度的向上运动更强烈的波动性。为了解释这一现象,Engle(1993)描述了如下形式的对好消息和坏消息的非对称信息曲线:波动性0信息37EView估计了两个考虑了波动性的非对称冲击的模型:TARCH和EGARCH。§18.5.1TARCH模型TARCH或者门限(Threhold)ARCH模型由Zakoian(1990)和Gloten,Jafanathan,Runkle(1993)独立的引入。条件方差指定为:uud其中,当ut0时,dt2t2t12t1t12t1(18.16)1;否则,dt0。在这个模型中,好消息影响:好消息有一个的冲击;坏消息有一个对ut0和坏消息ut0对条件方差有不同的的冲击。如果0,则信息是非对称的,如果0,我们说存在杠杆效应,非对称效应的主要效果是使得波动加大;如果0,则非对称效应的作用是使得波动减小。许多研究人员发现了股票价格行为的非对称的实例负的冲击似乎比正的冲击更容易增加波动。因为较低的股价减少了相对公司债务的股东权益,股价的大幅下降增加了公司的杠杆作用从而提高了持有股票的风险。估计TARCH模型,要以一般形式指定ARCH模型,但是应该点击ARCH38Specification目录下的TARCH(aymmetric)按钮,而不是选择GARCH选项。例4由于货币政策及其它政策的实施力度以及时滞导致经济中出现了不同于货币政策开始实施阶段的条件因素,导致货币政策发生作用的环境发生了变化,此时,货币政策在产生一般的紧缩或者是扩张的政策效应基础上,还会产生一种特殊的效应,我们称之为“非对称”效应。表现在经济中,就是使得某些经
济变量的波动加大或者变小。建立了通货膨胀率(t)的TARCH模型。采用居民消费物价指数(CPI,上年同期=100)减去100代表通货膨胀率t,货币政策变量选用狭义货币供应量M1的增长率(M1Rt)、银行同业拆借利率(7天)(R7t),模型中解释变量还包括货币流通速度(Vt)(Vt=GDPt/M1t)、通货膨胀率的1期滞后(t-1)。使用银行同业拆借利率代替存款利率,是由于目前我国基本上是一个利率管制国家,中央银行对利率直接调控,因此名义存款利率不能够反映市场上货币供需的真实情况(18-CPI文件中方程CPI1)。3940
由TARCH模型的回归方程和方差方程得到的估计结果为:t2.380.97t10.089M1Rt20.22Rt24.048Vt1(-2.62)(25.53)(5.068)(-3.4)(1.64)2t12t1t12t10.0370.24u0.399ud0.956(1.152)(0.94)(-3.08)(3.9)2tR2=0.96D.W.=1.83结果表中的(RESID)某ARCH(1)项是(18.16)式的,也称为TARCH项。在上式中,TARCH项的系数显著不为零,说明货币政策的变动对物价具有非对称效应。需要注意,方差方程中=-0.399,即非对称项的系数是负的。这就说明,货币政策对于通货膨胀率的非对称影响是使得物价的波动越来越小。41观察残差图,还可以发现货币政策的非对称作用在不同阶段对通货膨胀率表现是不同的:在经济过热时期,如1992年~1994年期间,通过均值方程中货币政策变量的紧缩作用,导致了货币政策对通货膨胀的减速作用非常明显,但是由于通货膨胀率方程的残差非常大,由方差方程可知这一时期物价波动很大,但ut0,则dt-1=0,所以TARCH项不存在,即不存在非对称效应。1995年~1996年初ut0,则TARCH项存在,且其系数是负值,于是非对称效应使得物价的波动迅速减小。当处于经济增长的下滑阶段,它的残差只在零上下波动,虽然出现负值比较多,但这一时期的货币政策非对称扩张作用非常小。42对于高阶TARCH模型的制定,EView将其估计为:t2iut2iut21dt1jt2ji1j1qp(18.17)§18.5.2EGARCH模型EGARCH或指数(E某ponential)GARCH模型由纳尔什(Nelon,1991)提出。条件方差被指定为:loglog2t2t1ut1t1ut1(18.18)t1等式左边是条件方差的对数,这意味着杠杆影响是指数的,而不是二次的,所以条件方差的预测值一定是非负的。杠杆效应的存在能够通过得到检验。如果,则冲击的影响存在
着非对称性。0430的假设EView指定的EGARCH模型和一般的Nelon模型之间有两点区别。首先,Nelon假设ut服从广义误差分布,而EView假设扰动项服从正态分布;其次,Nelon指定的条件方差的对数与上述的不同:loglog2t2t1ut1t12ut1t1(18.19)在正态误差的假设下估计这个模型将产生与EView得出的那些结论恒等的估计结果,除了截矩项,它只差了2EView指定了更高阶的EGARCH模型:log2tj1pjlog2tjutiu2iitititii1q(18.20)估计EGARCH模型只要选择ARCH指定设置下的EGARCH项即可。44克里斯汀(Chritie,1982)的研究认为,当股票价格下降时,资本结构当中附加在债务上的权重增加,如果债务权重增加的消息泄漏以后,资产持有者和购买者就会产生未来资产收益率将导致更高波动性的预期,从而导致该资产的股票价格波动。因此,对于股价反向冲击所产生的波动性,大于等量正向冲击产生的波动性,这种“利空消息”作用大于“利好消息”作用的非对称性,在美国等国家的一些股价指数序列当中得到验证。例5那么在我国的股票市场运行过程当中,是否也存在股票价格波动的非对称性呢?利用沪市的股票收盘价格指数数据,我们估计了股票价格波动的两种非对称模型,结果分别如下:(18-SP文件中TARCH1方程)①、TARCH模型:均值方程:log(pt)0.99log(pt1)(19689.6)方差方程:2t8.19100.127u62t10.150dtu2t10.789452t1(5.57)(7.58)(5.31)(45.43)对数似然值=3012.5AIC=-5.77SC=-5.75
更多推荐
方差,方程,模型
发布评论