2024年3月16日发(作者:沃尔沃xc90降价严重为什么)
Ef?cientIn?uenceMaximizationinSocialNetworks
MicrosoftResearchAsia
Beijing,China
WeiChen
weic@unw@
MicrosoftResearchAsia
Beijing,China
YajunWang
uterScience
TsinghuaUniversity
Beijing,China
SiyuYang
@
ABSTRACT
In?uencemaximizationistheproblemof?ndingasmallsubset
ofnodes(seednodes)inasocialnetworkthatcouldmaximizethe
spreadofin?paper,westudytheef?cientin?uence
oim-
provetheoriginalgreedyalgorithmof[5]anditsimprovement[7]
tofurtherreduceitsrunningtime,andthesecondistoproposenew
degreediscountheuristicsthatimprovesin?-
uateouralgorithmsbyexperimentsontwolargeacademiccollabo-
.
Ourexperimentalresultsshowthat(a)ourimprovedgreedyalgo-
rithmachievesbetterrunningtimecomparingwiththeimprove-
mentof[7]withmatchingin?uencespread,(b)ourdegreediscount
heuristicsachievemuchbetterin?uencespreadthanclassicdegree
andcentrality-basedheuristics,andwhentunedforaspeci?cin?u-
encecascademodel,itachievesalmostmatchingin?uencethread
withthegreedyalgorithm,andmoreimportantly(c)thedegreedis-
countheuristicsrunonlyinmillisecondswhileeventheimproved
greedyalgorithmsruninhoursinourexperimentgraphswithafew
tensofthousandsofnodes.
Basedonourresults,webelievethat?ne-tunedheuristicsmay
providetrulyscalablesolutionstothein?uencemaximizationprob-
lemwithsatisfyingin?uencespreadandblazinglyfastrunning
ore,contrarytowhatimpliedbytheconclusionof[5]
thattraditionalheuristicsareoutperformedbythegreedyapprox-
imationalgorithm,ourresultsshednewlightsontheresearchof
heuristicalgorithms.
UCTION
CategoriesandSubjectDescriptors
F.2.2[AnalysisofAlgorithmsandProblemComplexity]:Non-
numericalAlgorithmsandProblems
GeneralTerms
Algorithms,Experimentation,Performance
Keywords
socialnetworks,in?uencemaximization,heuristicalgorithms
Permissiontomakedigitalorhardcopiesofallorpartofthisworkfor
personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare
notmadeordistributedforpro?torcommercialadvantageandthatcopies
bearthisnoticeandthefullcitationonthe?otherwise,to
republish,topostonserversortoredistributetolists,requirespriorspeci?c
permissionand/orafee.
KDD’09,June28–July1,2009,Paris,France.
Copyright2009ACM978-1-60558-495-9/$5.00.
Recentlymanylarge-scaleonlinesocialnetworksites,suchas
FacebookandFriendster,becomesuccessfulbecausetheyarevery
effectivetoolsinconnectingpeopleandbringingsmallanddiscon-
nectedof?er,theyarealso
becomingahugedisseminationandmarketingplatform,allowing
informationandideastoin?uencealargepopulationinashortpe-
r,tofullyutilizethesesocialnetworksasmar-
ketingandinformationdisseminationplatforms,manychallenges
paper,wepresentourworktowardsaddress-
ingoneofthechallenges,namely?ndingin?uentialindividuals
ef?cientlyinalarge-scalesocialnetwork.
Considerthefollowinghypotheticalscenarioasamotivatingex-
companydevelopsacoolonlineapplicationfor
anonlinesocialnetworkandwantstomarketitthroughthesame
limitedbudgetsuchthatitcanonlyselectasmall
numberofinitialusersinthenetworktouseit(bygivingthemgifts
orpayments).Thecompanywishesthattheseinitialuserswould
lovetheapplicationandstartin?uencingtheirfriendsonthesocial
networktouseit,andtheirfriendswouldin?uencetheirfriends’
friendsandsoon,andthusthroughtheword-of-moutheffecta
largepopulationinthesocialnetworkwouldadopttheapplication.
Theproblemiswhomtoselectastheinitialuserssothattheyeven-
tuallyin?,
theproblemof?ndingin?uentialindividualsinasocialnetwork.
Thisproblem,referredtoasin?uencemaximization,wouldbe
ofinteresttomanycompaniesaswellasindividualsthatwantto
promotetheirproducts,services,andinnovativeideasthroughthe
powerfulword-of-moutheffect(orcalledviralmarketing).Online
socialnetworksprovidegoodopportunitiestoaddressthisprob-
lem,becausetheyareconnectingahugenumberofpeopleand
theycollectahugeamountofinformationaboutthesocialnet-
r,theyalso
ialnetworksare
large-scale,havecomplexconnectionstructures,andarealsovery
dynamic,whichmeansthatthesolutiontotheproblemneedstobe
veryef?cientandscalable.
DomingosandRichardson[3,8]arethe?rsttostudyin?uence
ethodsareproba-
bilistic,,Kleinberg,andTardos[5]arethe?rstto
formulatetheproblemasthefollowingdiscreteoptimizationprob-
lnetworkismodeledasagraphwithverticesrep-
resentingindividualsandedgesrepresentingconnectionsorrela-
?uencearepropagatedinthe
ascade
models,namelytheindependentcascademodel,theweightcas-
cademodel,andthelinearthresholdmodel,areconsideredin[5].
Givenasocialnetworkgraph,aspeci?cin?uencecascademodel,
199
andasmallnumberk,thein?uencemaximizationproblemisto
?ndkverticesinthegraph(referedtoasseeds)suchthatunder
thein?uencecascademodel,theexpectednumberofverticesin-
?uencedbythekseeds(referredtoasthein?uencespreadinthe
paper)isthelargestpossible.
hattheoptimizationproblemisNP-hard,and
presentagreedyapproximationalgorithmapplicabletoallthree
models,whichguaranteesthatthein?uencespreadiswithin(1?
1/e)oftheoptimalin?soshowthroughex-
perimentsthattheirgreedyalgorithmsigni?cantlyoutperformsthe
classicdegreeandcentrality-basedheuristicsinin?uencespread.
However,theiralgorithmhasaseriousdrawback,whichisitsef-
?ementoftheirgreedyalgorithmistocomputethe
in?uencespreadgivenaseedset,whichturnsouttobeadif?cult
dof?ndinganexactalgorithm,theyrunMonte-Carlo
simulationsofthein?uencecascademodelforsuf?cientlymany
timestoobtainanaccurateestimateofthein?
result,even?ndingasmallseedsetinamoderatelylargenetwork
(e.g.15000vertices)couldtakedaystocompleteonamodern
servermachine.
Severalrecentstudiesaimedataddressingthisef?ciencyissue.
In[6],KimuraandSaitoproposeshortest-pathbasedin?uencecas-
cademodelsandprovideef?cientalgorithmsofcomputein?uence
r,sincethein?uencecascade
modelsaredifferent,theydonotdirectlyaddresstheef?ciencyis-
sueofthegreedyalgorithmsforthecascademodelsstudiedin[5].
In[7],tanoptimizationinselectingnew
seeds,whichisreferredtoasthe“Cost-EffectiveLazyForward”
(CELF)Foptimizationusesthesubmodular-
itypropertyofthein?uencemaximizationobjectivetogreatlyre-
ducethenumberofevaluationsonthein?uencespreadofver-
xperimentalresultsdemonstratethatCELFoptimiza-
tioncouldachieveasmuchas700timesspeedupinselectingseed
vertices,r,ourexperi-
mentsshowthattheimprovedalgorithmstilltakesafewhoursto
completeinagraphwithafewtensofthousandsofvertices,soit
isstillnotef?cientforlarge-scalenetworks.
Inthispaper,wetackletheef?ciencyissueofin?uencemaxi-
irection,we
designnewschemestofurtherimprovethegreedyalgorithm,and
combineourschemetogetherwiththeCELFoptimizationtoobtain
therdirection,weproposenew
degreediscountheuristicswithin?uencespreadsthataresigni?-
cantlybetterthantheclassicdegreeandcentrality-basedheuristics
andareclosetothein?
biggestadvantageofourheuristicsistheirspeed,astheyaremany
ordersofmagnitudefasterthanallgreedyalgorithms.
Ournewgreedyalgorithmsanddegreediscountheuristicsare
derivedfromtheindependentcascademodelandweightedcas-
uctextensiveexperimentsontworeal-life
collaborationnetworkstocompareouralgorithmswiththeCELF
optimizedalgorithmaswellasclassicdegreeandcentralityheuris-
metricswecomparearein?uencespreadandrunning
newgreedyalgorithms,theirin?uencespreadexactly
matchwiththeoriginalgreedyalgorithm,whereastheirrunning
timesare15%to34%
degreediscountheuristics,theirin?uencespreadareclosetothat
ofthegreedyalgorithm,andalwaysoutperformstheclassicdegree
ticularheuristictunedfor
theindependentcascademodelwithasmallpropagationprobabil-
ityalmostmatchesthein?uencespreadofthegreedyalgorithm
(sameasthegreedyalgorithminoneexperimentalgraphand3.4%
lowerinanothergraph)
biggestadvantageistheirblazinglyfastspeed—theycompletethe
taskinonlyafewmilliseconds,whichislessthanone-millionthof
rmore,wealsorunour
resultsdemonstratethatournewalgorithmsstillhavegoodin?u-
ore,
theyarerobustacrossthesemodels.
Theseresultsprovideusanewperspectiveinthestudyofthe
in?doffocusingoureffortin
furtherimprovingtherunningtimeofthegreedyalgorithm,itper-
hapsmorepromisingtofocusonimprovingheuristicsthatcould
beamilliontimesfasterandmakingtheirin?uencespreadcloseto
thegreedyalgorithm.
Tosummarize,,we
providefurtherimprovementtothegreedyalgorithmthathasguar-
anteedapproximatein?,andmoreimpor-
tantly,weproposenewheuristicsthathavein?uencespreadsclose
tothegreedyalgorithmwhilerunningatmorethansixordersof
agedbythese
results,wesuggestthatthepromisingapproachinsolvingthein-
?uencemaximizationproblemforlarge-scalesocialnetworksisto
investinheuristicstoimprovetheirin?uencespread,ratherthan
tryingtoimprovetherunningtimeofthegreedyalgorithms,which
istheapproachtakenbymostpreviousstudies.
n2presents
thegreedyalgorithmandournewimprovementstothegreedyalgo-
rithmintheindependentcascademodelandtheweightedcascade
n4
ludethepaperinSection5.
INGTHEGREEDY
ALGORITHM
Inthissection,wediscussimprovementofthegreedyalgorithm
proposedbyKempe,etal.[5]fortheindependentcascademodel
aswellastheweightedcascademodel.
2.1Problemde?nitionandthegreedy
algorithm
AsocialnetworkismodeledasanundirectedgraphG=(V,E),
withverticesinVmodelingtheindividualsinthenetworkand
-
ample,inourexperimentsection,westudycoauthorshipgraphs
whereverticesareauthorsofacademicpapersandtwovertices
haveanedgeifthetwocorrespondingauthorshavecoauthoreda
paper.
1
Weusentodenotethenumberofverticesandmtode-
venience,
Table1listsimportantvariablesusedthroughoutthepaper.
LetSbethesubsetofverticesselectedtoinitiatethein?uence
propagation,Cas(S)denote
therandomprocessofin?uencecascadefromtheseedsetS,of
whichtheoutputisarandomsetofverticesin?-
rithmsinthispapertakethegraphGandanumberkasinputand
generateaseedsetSofcardinalityk,withtheintentionthatthe
expectednumberofverticesin?uencedbytheseedsetS,which
wecallin?uencespread,isaslargeaspossible.
Ourcoauthorshipgraphsstudiedintheexperimentsectionareac-
tuallymultigraphs,withparalleledgesbetweentwoverticesdenot-
ingthenumberofpaperscoauthoredbythetwoauthors,sameas
in[5].Forsimplicity,however,inourexplanationofthealgorithms
andheuristics,ultscan
begeneralizedtomultigraphsinastraightforwardway.
1
200
更多推荐
降价,作者
发布评论