2023年12月8日发(作者:五菱宏光s七座新车图片)
用python计算准确率_Python中计算模型精度的几种方
法,Pytorch,中求,准确率
方法一:直接在epoch过程中求取准确率
简介:此段代码是LeNet5中截取的。
def train_model(model,train_loader):
optimizer = (ters())
loss_func = ntropyLoss()
EPOCHS = 5
for epoch in range(EPOCHS):
correct = 0
for batch_idx,(X_batch,y_batch) in enumerate(train_loader):
_grad()
#这里是只取训练数据的意思吗,X_batch和y_batch是怎么分开的?
#答:X_batch和y_batch是一一对应的,只不过顺序打乱了,参考
output = model(X_()) #X_()是什么意思
loss = loss_func(output,y_batch)
rd()
()
# Total correct predictions
#第一个1代表取每行的最大值,第二个1代表只取最大值的索引
#这两行代码是求准确率的地方
predicted = (,1)[1]
correct += (predicted == y_batch).sum()
#print(correct)
if batch_idx % 100 == 0:
print(\'Epoch :{}[{}/{}({:.0f}%)]t Loss:{:.6f}t Accuracy:{:.3f}\'.format(epoch,batch_idx *
len(X_batch),len(train_t),100.*batch_idx /
len(train_loader),(),float(correct*100)/float(BATCH_SIZE)*(batch_idx+1)))
if __name__ == \'__main__\':
myModel = LeNet5()
print(myModel)
train_model(myModel,train_loader)
evaluate(myModel,test_loader,BATCH_SIZE)
方法二:构建函数,然后在epoch中调用该函数
简介:此段代码是对Titanic(泰坦尼克号)数据分析截取。
epochs = 10
log_step_freq = 30
dfhistory = ame(columns = [\'epoch\',\'loss\',metric_name,\'val_loss\',\'val_\'+metric_name])
print(\'\')
nowtime = ().strftime(\'%Y-%m-%d %H:%M:%S\')
print(\'=========\'*8 + \'%s\'%nowtime)
for epoch in range(1,epochs+1):
#1.训练循环
()
loss_sum = 0.0
metric_sum = 0.0
step = 1
for step,(features,labels) in enumerate(dl_train,1):
#梯度清零
_grad()
#正向传播求损失
predictions = net(features)
loss = loss_func(predictions,labels)
metric = metric_func(predictions,labels)
#反向传播求梯度
rd()
()
#打印batch级别日志
loss_sum += ()
metric_sum += ()
if step%log_step_freq == 0:
print((\'[Step = %d] loss: %.3f,\' + metric_name+\': %.3f %%\')%(step,loss_sum/step,100*metric_sum/step))
#2,验证循环
()
val_loss_sum = 0.0val_metric_sum = 0.0
val_step =1
for val_step,(features,labels) in enumerate(dl_valid,1):
#关闭梯度计算
with _grad():
pred = net(features)
val_loss = loss_func(pred,labels)
val_metric = metric_func(labels,pred)
val_loss_sum += val_()
val_metric_sum += val_()
#3,记录日志
info = (epoch,loss_sum/step,100*metric_sum/step,
val_loss_sum/val_step,100*val_metric_sum/val_step)
[epoch-1] = info
#打印epoch级别日志
print((\'nEPOCH = %d,loss = %.3f,\' + metric_name+
\'=%.3f %%,val_loss = %.3f\'+\' val_\'+metric_name+\'= %.3f %%\')%info)
nowtime = ().strftime(\'%Y-%m-%d %H:%M:%S\')
print(\'n\'+\'==========\'*8 + \'%s\'%nowtime)
print(\'\')
更多推荐
计算,准确率,方法
发布评论