2024年3月8日发(作者:奥迪s4怎么样)

第三章《勾股定理》实际应用

综合训练(二)

1.某校机器人兴趣小组在如图所示的三角形场地上开展训练.已知:AB=10,BC=6,AC=8;机器人从点C出发,沿着△ABC边按C→B→A→C的方向匀速移动到点C停止;机器人移动速度为每秒2个单位,移动至拐角处调整方向需要1秒(即在B、A处拐弯时分别用时1秒).设机器人所用时间为t秒时,其所在位置用点P表示(机器人大小不计).

(1)点C到AB边的距离是 ;

(2)是否存在这样的时刻,使△PBC为等腰三角形?若存在,求出t的值;若不存在,请说明理由.

2.如图,学校操场边有一块四边形空地ABCD,其中AB⊥AC,AB=CD=4m,BC=9m,AD=7m.为了美化校园环境,创建绿色校园,学校计划将这块四边形空地进行绿化整理.

(1)求需要绿化的空地ABCD的面积;

(2)为方便师生出入,设计了过点A的小路AE,且AE⊥BC于点E,试求小路AE的长.

3.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A、H、B在同一条直线上),并新修一条路CH,已知CB=千米,CH=2千米,HB=1千米.

(1)CH是否为从村庄C到河边的最近路?请通过计算加以说明;

(2)求新路CH比原路CA少多少千米?

4.某中学A,B两栋教学楼之间有一块如图所示的四边形空地ABCD,学校为了绿化环境,计划在空地上种植花草,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.

(1)求出四边形空地ABCD的面积;

(2)若每种植1平方米的花草需要投入120元,求学校共需投入多少元.

5.今有竹高一丈,末折抵地,去根三尺,问折者高几何?意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?

6.我国明朝数学著作《直指算法统宗》中有一道关于勾股定理的问题:“平地秋千为起,踏板一尺高地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.二公高士好争,算出索长有几?(注:二步=10尺).”大意是:“当秋千静止时,它的踏板离地的距离为1尺,将秋千的踏板往前推2步(这里的每1步合5尺),它的踏板与人一样高,这个人的身高为5尺,秋千的绳索始终是呈直线状态的,现在问:这个秋千的绳索有多长?”请解答上述问题.

7.如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间多长?

8.如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)

9.我市某中学有一块四边形的空地ABCD(如图所示),为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,CD=13m,BC=12m.

(1)求出空地ABCD的面积.

(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

10.为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,

(1)求出空地ABCD的面积.

(2)若每种植1平方米草皮需要200元,问总共需投入多少元?

11.如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了80m到达点B,然后再沿北偏西30°方向走了60m到达目的地C.

(1)求A、C两点之间的距离;

(2)确定目的地C在营地A的北偏东多少度方向.

12.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?

13.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.

(1)这个云梯的底端离墙多远?

(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?

14.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支14cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为多少?

15.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,2017年第21号台风“兰恩”的中心从A点以速度为20千米/小时,沿AB方向移动,以台风中心为圆心周围250km以内为受影响区域.已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,请问海港C受台风影响吗?若受到影响,台风影响该海港的时间有多长?若不会受到影响,请说明理由.

16.一架梯子AB长25米,如图所示,斜靠在一面上,此时梯子底端B离墙7米;如果梯子的顶端A下滑了4米至点A\',那么梯子的底端水平滑动的距离BB\'是多少米?

17.如图,已知某山的高度AC为800米,从山上A处与上下B处各建一个索道口,且BC=1500米,欢欢从山下索道口坐缆车到山顶,已知缆车每分钟走50米,那么大约多少分钟后,欢欢才能达到山顶?

18.如图,市政部门计划在一块三角形空地ABC内部种植草坪,并紧靠AB边外侧修建宽3m,长17m的硬化甬路(阴影图形为长方形).已知AC=8cm,BC=15cm,经过市政部门市场调研,种植草坪的费用为每平米600元,硬化甬路的费用为每平米800元,求此项工程的预计总费用.

19.如图,MN是一条东西朝向的笔直的公路,C是位于该公路上的一个检测点,一辆长为9m的小货车BD行驶在该公路上.小王位于检测点C正西北方向的点A处观察小货车,某时刻他发现车头D与车尾B分别距离他10m与17m.

(1)过点A向MN引垂线,垂足为E,请利用勾股定理找出线段AE、DE与AE、BE之间所满足的数量关系;

(2)在上一问的提示下,继续完成下列问题:

①求线段DE的长度;

②该小货车的车头D距离检测点C还有多少米?

20.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了避免走散,他们用两部对话机联系,已知对话机的有效距离为15千米,早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:

00,甲、乙二人相距多远?还能保持联系吗?

更多推荐

影响,空地,学校,方向,距离,种植,公路