2023年12月7日发(作者:a4l落地价)
DSM Engineering Plastics
–
Technical Guide
Snap fit design
Cantilever beam snap-fits
Cantilever beam type snap-fits can be calculated using a simplification of the general beam theory. However
the calculations are a simplification. In general, the stiffness of the part to which the snap-fit connects, is
important. The formulae mentioned only roughly describe the behavior of both the part geometry and the
material. On the other hand, the approach can be used as a first indication if a snap-fit design and material
choice are feasible.
Cantilever beam with constant rectangular cross section
A simple type of snap-fit, the cantilever beam, is demonstrated in the figure below, which shows the major
geometrical parameters of this type of snap-fit. The cross section is rectangular and is constant over the
whole length L of the beam.
The maximum allowable deflection y and deflection force Fb can be calculated with the following formulas if
the maximum allowable strain level ε of the material is known.
2 L2
y = -- . -- . ε
3 t
w . t2 . Es
Fb = ------------ . ε
6 . L
Date:23 February, 2005
1
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such Engineering Plastics
–
Technical Guide
where
Es = secant modulus
L = length of the beam
t = height of the beam
w = width of the beam
ε = maximum allowable strain level of the material
The four dimensions that can be changed by the designer are:
- h, the height of the snap-fit lip. Changing the height might reduce the ability of the snap-fit to ensure a proper
connection.
- t, the thickness of the beam. A more effective method is to use a tapered beam. The stresses are more
evenly spread over the length of the beam.
- increasing the beam length, L, is the best way to reduce strain as it is represented squared in the equation
for the allowable deflection.
- the deflection force is proportional to the width, w, of the snap-fit lip.
Beams with other cross sections
The following general formulae for the maximum allowable deflection y and deflection force Fb can be used for
cantilever beams with a constant asymmetric cross section.
L2
y = ------- . ε
3 . e
Es . I
Fb = ------- . ε
e . L
where
Es = secant modulus
I = moment of inertia of the cross section
L = length of the beam
e = distance from the centroid to the extremities
ε = maximum allowable strain level of the material
Normally tensile stresses are more critical than compressive stresses. Therefore the distance from the
centroid to the extremities, e, that belongs to the side under tension is used in the above-mentioned formulae.
The moment of inertia and the distance from the centroid to the extremities is given in table 1 for some cross
sections.
Date:23 February, 2005
2
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such information.
–
Technical Guide
Table 1. Moment of inertia and distances from centroid to extremities
DSM Engineering Plastics
Date:23 February, 2005
3
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such Engineering Plastics
–
Technical Guide
Tapered beams with a variable height
The following formulae can be used to calculate the maximum allowable deflection y and the deflection force
Fb for a tapered cantilever beam with a rectangular cross section. The height of the cross section decreases
linearly from t1 to t2, see figure above.
2 . L2
y = c .-------- . ε
3 . t1
2 w . t1 . Es
Fb = -------------- . ε
6 . L
where
Es = secant modulus
L = length of the beam
c = multiplier
w = width of the beam
t1 = height of the cross section at the fixed end of the beam
ε = maximum allowable strain level of the material
The formula for the deflection y contains a multiplier c that depends on the ratio t2 / t1, see table 2, where t1 is
the height of the beam at the fixed end and t2 is the height of the beam at the free end.
Date:23 February, 2005
4
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such Engineering Plastics
–
Technical Guide
Table 2. Multiplier c as a function of the height
t2 / t1 0.40 0.50 0.60 0.70 0.80 0.90 1.00
c 1.893 1.636 1.445 1.2971.1791.0821.000
Tapered beams with a variable width
The following formulae can be used to calculate the maximum allowable deflection y and deflection force Fb
for a tapered cantilever beam with a rectangular cross section. The width of the cross section decreases
linearly from w1 to w2, see figure above.
2 . L2
y = c .-------- . ε
3 . t
2 w1 . t . Es
Fb = -------------- . ε
6 . L
where
Es = secant modulus
L = length of the beam
c = multiplier
w1 = width of the beam at the fixed end of the beam
t = height of the cross section
ε = maximum allowable strain level of the material
Date:23 February, 2005
5
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such Engineering Plastics
–
Technical Guide
The multiplier c depends on the ratio w2 / w1, see table 3, where w1 is the width of the beam at the fixed end
and w2 is the width of the beam at the free end.
Table 3. Multiplier c as a function of the width
w2 / w1 0.125 0.25 0.50 1.00
c 1.368 1.284 1.158 1.000
Cylindrical snap-fits
One must distinguish between a cylindrical snap-fit close to the end of the pipe or remote from the end
Date:23 February, 2005
6
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such Engineering Plastics
–
Technical Guide
More material must be deformed if the snap fit is remote from the end, and the deflection force Fb and mating
force Fa will be a factor 3.4 higher. The snap-fit is regarded as being remote if
l > 1.8 . √ ( D . t )
where l = distance to the end of the pipe.
The following symbols are further used:
D = average diameter of the pipe = (Do + do) / 2
Do = outside diameter of the pipe
do = outside diameter of the shaft
di = inside diameter of the shaft
Δd / 2 = height of the bulge on the shaft = depth of the groove in the pipe
Es = shear modulus of the plastic
t = wall thickness of the pipe = (Do – do) / 2
μ = coefficient of friction
ν = Poisson’s ratio of the plastic
The formula for the deflection force Fb is given in table 4 for both a rigid (metal) shaft with a flexible pipe, and
a flexible shaft with a rigid (metal) pipe. Four cases can be distinguished.
Date:23 February, 2005
7
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such Engineering Plastics
–
Technical Guide
Table 4. Deflection force Fb
Rigid shaft,
flexible
pipe
Snap-fit
close
to the end
Flexible
shaft,
rigid pipe
Snap-fit
remote from
the end
Rigid shaft,
flexible
pipe
Flexible
shaft,
rigid pipe
√ [(Do / do - 1) / (Do / do + 1)]
0.62 . Δd . do . --------------------------------------------- . Es
[(Do / do)2 + 1] / [(Do / do)2 – 1] + ν
√ [(do / di - 1) / (do / di + 1)]
0.62 . Δd . do . --------------------------------------------- . Es
[(do / di)2 + 1] / [(do / di)2 – 1] – ν
√ [(Do / do - 1) / (Do / do + 1)]
2.1 . Δd . do . --------------------------------------------- . Es
[(Do / do)2 + 1] / [(Do / do)2 – 1] + ν
√ [(do / di - 1) / (do / di + 1)]
2.1 . Δd . do . -------------------------------------------- . Es
[(do / di)2 + 1] / [(do / di)2 – 1] – ν
If the deflection force Fb according table 4 has been calculated, the mating force Fa is found using the
expression
μ + tan α1
Fa = Fb . -----------------
1 – μ . tan α1
The highest tangential strain εφ in the plastic is approximately:
- Rigid shaft, flexible pipe: εφ = Δd / do (tension in the pipe)
- Flexible shaft, rigid pipe: εφ = - Δd / do (compression in the shaft)
The highest axial bending strain εa in the plastic is about a factor 1.59 higher :
εa = 1.59 . εφ (tension at one side and compression at the other side)
The calculation procedure when both parts are flexible and both are deformed is explained in the theory of
snap fits. As a first approach, for flexible materials with a comparable stiffness, one can assume that the total
deformation Δd is equally divided between the two parts.
Spherical snap-fits
The spherical snap-fit can be regarded as a special case of the cylindrical snap-fit. The formulas for a
cylindrical snap-fit close to the end of the pipe can be used.
Date:23 February, 2005
8
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such Engineering Plastics
–
Technical Guide
Mold construction
Mold construction costs are highly affected by the design of the snap fit.
Alternative B results in mold construction cost savings versus Alternative A
For design A, an expensive slide in the mold is required and the flat surfaces require expensive milling. No
slide is required for alternative B and the cylindrical outside surface can simply be drilled.
Date:23 February, 2005
9
All information supplied by or on behalf of DSM in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and, in good faith, believed reliable, but DSM assumes no
liability and makes no warranties of any kind, express or implied, including, but not limited to, those of title, merchantability, fitness for a particular purpose or non-infringement or any warranty arising from a course of
dealing, usage, or trade practice whatsoever in respect of application, processing or use made of the aforementioned information or product. The user assumes all responsibility for the use of all information provided and
shall verify quality and other properties or any consequence from the use of all such information.
更多推荐
落地,作者
发布评论