2024年3月16日发(作者:宝骏360发动机质量怎么样)
Volume0(1981),Number0pp.1–12
Ef?cientRANSACforPoint-CloudShapeDetection
RuwenSchnabelRolandWahlReinhardKlein
?
Universit?tBonn,ComputerGraphicsGroup
Abstract
Inthisworkwepresentorithm
decomposesthepointcloudintoaconcise,
hodisbasedonrandomsamplingand
detectsplanes,spheres,cylinders,elswithsurfacescomposedofthesebasicshapesonly,
els,weanstrate
thatthealgoriposed
methodscaleswellwithrespecttothesizeoftheinputpointcloudandthenumberandsizeoftheshapeswithin
intsetswithseveralmillionsofsamplesarerobustlydecomposedwithinlessthanaminute.
ationareasincludemeasurement
ofphysicalparameters,scanregistration,surfacecompression,hybridrendering,shapeclassi?cation,meshing,
simpli?cation,approximationandreverseengineering.
CategoriesandSubjectDescriptors
(accordingtoACMCCS)
:I.4.8[ImageProcessingandComputerVision]:Scene
AnalysisShape;SurfaceFitting;I.3.5[ComputerGraphics]:ComputationalGeometryandObjectModelingCurve,
surface,solid,andobjectrepresentations
uction
Duetotheincreasingsizeandcomplexityofgeometricdata
setsthereisanever-growingdemandforconciseandmean-
allywhendealingwith
digitizedgeometry,edwithalaserscanner,no
handlesformodi?cationofthedataareavailabletotheuser
r,inor-
dertobeabletomakeuseofthedataeffectively,theraw
digitizeddatahastobeenrichedwithabstractionsandpos-
siblysemanticinformation,providingtheuserwithhigher-
chhandlescanpro-
videtheinteractionrequiredforinvolvededitingprocesses,
suchasdeleting,movingorresizingcertainpartsandhence
canmakethedatamorereadilyusableformodelingpur-
se,traditionalreverseengineeringapproaches
canprovidesomeoftheabstractionsthatweseek,butusu-
allyreverseengineeringfocuseson?ndingareconstruction
oftheunderlyinggeometryandtypicallyinvolvesquitete-
notjusti?edinasettingwhere
acompleteanddetailedreconstructionisnotrequiredatall,
orshalltakeplaceonlyaftersomebasiceditingoperations
therhand,detecting
instancesofasetofprimitivegeometricshapesinthepoint
sampleddataisameanstoquicklyderivehigherlevelsofab-
mpleinFig.1patchesofprimitiveshapes
provideacoarseapproximationofthegeometrythatcould
beusedtocompressthepoint-cloudveryeffectively.
Anotherproblemarisingwhendealingwithdigitizedgeom-
orethe
ef?ciencyofalgorithmsinferringabstractionsofthedata
isofutmostimportance,especiallyininteractivesettings.
Thus,inthispaperwefocusespeciallyon?ndinganef?-
cientalgorithmforpoint-cloudshapedetection,inorderto
kisa
highperformanceRANSAC[FB81]algorithmthatiscapa-
bletoextractavarietyofdifferenttypesofprimitiveshapes,
whileretainingsuchfavorablepropertiesoftheRANSAC
paradigmasrobustness,
heartofouralgorithmareanovel,hierarchicallystructured
samplingstrategyforcandidateshapegenerationaswellas
anovel,lazycostfunctionevaluationscheme,whichsignif-
?
e-mail:{schnabel,wahl,rk}@
c
hedbyBlackwell
更多推荐
发动机,质量,作者
发布评论