2023年12月8日发(作者:最省油的汽车有哪几款)

图像识别的不同粒度

图像识别的不同粒度

在研究图像识别时,发现了细粒度图像识别领域,就整体了解了下。

根据粒度的由粗到细可大致分为三层:

通用图像识别(图像分类,目标检测,分割等)

细粒度图像识别(车型识别等)

更精细粒度图像识别(人脸识别等)

举个例子,图像分类就是要识别出是否是人类,细粒度图像分类是要识别出是人类中的哪个人种,更细粒度的图像识别比如人脸识别则是要

识别出具体是哪个人。

通用图像识别

图像分类应该算是最早引入深度学习的,经典的模型有AlexNet、VGG、ResNet等。目前基本上算是其他图像识别的基础,其卷积层部分

通常被用作特征提取。

经典的数据集有ImageNet。

在图像分类的基础上,有衍生出了目标识别,语义分割、实例分割等。

网上这方面的介绍挺多的,可自行查阅。

细粒度图像识别

细粒度(fine grained)

基于深度学习的物体分类可以大致分为4类:

使用通用DCNN(Deep Convolutional Neural >Network,深度卷积神经网络)进行细粒度分类;

先使用DCNN进行部件定位,之后进行部位对齐;

使用多个DCNN对细粒度识别中的相似特征进行判别;

使用注意力模型定位区分性强的区域。

可以按照其使用的监督信息的多少,分为“基于强监督信息的分类模型”和“基于弱监督信息的分类模型”两大类。

所谓强监督的细粒度图像分类算法,是指在模型训练的时候,除了图像的类别标签外,还使用了标注框、局部区域位置等额外的人工

标注信息。也有些算法考虑仅在模型训练的时候使用标注信息, 而在进行图像分类时不使用这些信息. 这在一定程度上提高了算法的实

用性, 但与只依赖类别标签的弱监督分类算法相比仍有一定的差距。

强监督经典的模型有

Part R-CNN

,

Pose Normalized CNN

弱监督经典模型有

两级注意力(Two Level Attention)

,

星座(Constellations)

,

双线性CNN(Bilinear CNN)

更精细粒度图像识别

其实这个领域我也了解的不太多。

在此以人脸识别为例,虽然也可以按照分类问题来解决,但因为个体很多,以至于基本很难实现,所以通常当做度量学习问题。将人脸通过

特征提取方法映射到深度特征空间再做处理。

损失函数比较有趣,通常用对比损失(contrastive loss)和三元损失(triplet loss)。

三元损失函数同时接受三张图像输入

X

X

+

X

?

,其中

X

X

+

匹配,而

X

X

?

不匹配人脸识别的经典模型有DeepFace、FaceNet等

更多推荐

分类,图像,图像识别,细粒度,模型,使用,监督,深度